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1 INTRODUCTION 
This document describes the Algorithm Theoretical Baseline for the processing of level 2 
products from the EUMETSAT Infra-Red Sounder (IRS) mission to be flown on the Meteosat 
Third Generation (MTG) sounder platforms. 

1.1 Purpose 
This Algorithm Theoretical Baseline Document (ATBD) introduces the mission and its 
intended applications. It describes the algorithms to be implemented in order to process the IRS 
Level 1 measurements and retrieve the required geophysical parameters at the required 
accuracy at Day-1. 

1.2 Scope 
This document is the baseline guiding the specifications of the operational IRS Level 2 (L2) 
processor. It is also intended to inform Users interested in understanding the algorithms and 
science underlying the generation of the operational IRS L2 products. 

1.3 Applicable Documents 
 
[HQL2] MTG L2 products dissemination baseline EUM/MTG/DOC/09/0026 

1.4 Reference Documents 
 
[IRSL1ATBD] MTG-IRS Level 1 Algorithm Theoretical 

Basis Document 
EUM/RSP/TEN/16/878765 

   
Scientific and technical reference documents are provided in Appendix A. 

1.5 Document Structure 
This document is divided into five sections: 
Section 1 General introduction - this section 
 
Section 2  Short presentation of the IRS mission: its context, heritage, specificities and 
targeted applications. 
 
Section 3 Description of the algorithms sequence in the Day-1 baseline for operations 
 
Section 4 Description of the generic algorithms, which can be called from different steps of 
the L2 processing sequence 
 
Section 5 List and short description of assumptions and open issues 
 
Seven annexes are attached to this document: 
Appendix A: list of technical and scientific references 
Appendix B: list of acronyms 
Appendix C: draft products content tables 
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Appendix D: apodisation, relative information content and sounding performances of IRS 
compared to IASI 
Appendix E: demonstration projects and assessments results 
Appendix F: discussion on radiance bias tuning 
Appendix G: example of an implementation of slant to vertical coordinates computation 
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2 AN INTRODUCTION TO THE MTG-IRS MISSION 

2.1 The Meteosat Third Generation Programme 
In order to build on the success of the Meteosat First and Second Generation missions, 
EUMETSAT is developing the Meteosat Third Generation (MTG) satellites. After an 
elaborated user-consultation, the following needs have been identified: 

• Continuation of the current imagery missions: 
- Full Disk High Spectral Imagery (FDHSI); 
- Rapid Scan Service (RSS). 

• Development of new services: 
- Lightning Imagery; 
- Infrared Sounding. 

 
To cover these needs, the MTG space segment will consist in six satellites of two different 
types, namely four imaging satellites (MTG-I) and two sounding satellites (MTG-S). The 
MTG-I hosts the Flexible Combined Imager (FCI) and the Lightning Imager (LI) instruments, 
while the MTG-S hosts the Infra-Red Sounder (IRS) and the Copernicus Ultra-Violet and Near-
infrared sounder (UVN) instruments. In addition to the scientific missions, MTG will carry a 
small communications payload (GEOSAR, Geostationary Search and Rescue) to relay distress 
signals to a central reception station in Europe, for quick organisation of rescue activities.  

2.2 MTG-IRS target applications 
The IRS mission is primarily designed to support numerical weather predictions at regional 
and global scales, including nowcasting [MTG PP]. As concerns geophysical parameter products 
(aka Level 2 products), this is achieved through the provision in particular of: 

• Temperature and moisture vertical profiles; 
• Atmospheric Motion Vectors (AMV) derived from the former profiles; 
• Instability parameters. 

 
The instrument was hence specified with high spectral resolution in the infrared and high 
spatio-temporal sampling in order to provide frequent vertical atmospheric information to 
convective scale models, more consistently with their horizontal resolution. The high temporal 
frequency achieved from the geostationary orbit will in general increase the amount of 
information over dynamically important regions for Europe such as the North Atlantic and 
enhance the mid to short-range forecast capabilities. 
 
The thermodynamic parameters and cloud information retrieved from the IRS observations 
have direct applications for nowcasting in complement to regional models outputs, with the 
aim to improve reliability and lead-time in identifying areas of interest, e.g. with rapidly 
developing atmospheric instability responsible for vertical motion, convection, precipitation 
and severe storms. The assimilation of hyperspectral sounder data in numerical weather models 
is based on level 1 radiances. Exploratory studies have started to evaluate the feasibility and 
advantages of assimilating alternative representation of Level 2 products in convective scale 
models. The temperature, humidity and ozone profiles can be derived in a much frequent and 
spatially resolved manner than with sounding missions on Polar orbiters, and hence be used as 
air-mass tracers to extract frequent 3D atmospheric motion vectors. These are in turn important 
inputs to both the regional and global numerical weather prediction models. 
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The secondary objective of the IRS mission is to support atmospheric composition and air 
quality monitoring, together with the UVN sounding mission. The IRS instrument is designed 
to acquire information about O3 and CO. Other atmospheric compounds such as SO2 and NH3 
are also expected to be monitored with MTG-IRS. Importantly, ozone may also be a tracer for 
atmospheric features and ozone profiles hence need to be generated for AMVs too. 

2.3 The satellite platform 
Contrary to the satellites of the first and second Meteosat generations which were spin 
stabilised, MTGS and MTG-I will be three-axis stabilised platforms. The development of the 
MTG space segment is performed by Thales Alenia Space under ESA contract. 
 
The satellite orbit is defined to be geostationary with a nominal altitude of 35786 km, an orbital 
period of 86164 seconds, an inclination of 0o (+/- 1o) and a Sub-Satellite Point (SSP) at 0°N 
0°E. IRS: a hyperspectral sounder in GEO, measurements and acquisition principles 
The IRS instrument is an imaging infrared Fourier-interferometer. It acquires a number of 
interferograms simultaneously over a so-called “dwell” using a two-dimensional detector array 
in two spectral bands: the LWIR (8.26–14.70 µm) and the MWIR (4.44–6.25 µm). The spectral 
soundings are transmitted to the ground as interferograms and transformed to radiances in 
spectral channels as part of the ground processing, before dissemination to the end users in 
calibrated Level 1 (L1) datasets. The reader is referred to the MTG-IRS L1 ATBD 
[IRSL1ATBD] for further details on the instrument itself and on the L1 processing algorithms. 
 
As a result of this processing, 160x160 calibrated spectra are generated per band and per dwell, 
corresponding to simultaneous and contiguous observations within a dwell, with a spectral 
sampling of the order of 0.6 cm-1. 
 
The Earth disk has been divided into 4 regions of interest called LACs (Local Area Coverage) 
numbered 1 to 4 from South to North, see Figure 1. IRS uses a ‘step-and-stare’ mechanism to 
observe the Earth in a contiguous manner. A single dwell is acquired within 9.7 seconds and is 
stepped in an East/West or West/East direction to form a line of dwell spectral soundings, 
before moving northward to form the next line. The operation is repeated until a LAC is 
completely covered, which will take 15 minutes. 
 
The LAC 4, the northernmost LAC, is covering Europe and will be scanned every 30 minutes. 
The LACs 1, 2 and 3 will be imaged in-between successively. The nominal scan pattern, 
illustrated on Figure 1, has been defined to optimize the coverage and the need for calibration 
views. The scan pattern is configurable. 
 
The field of view of one dwell is 1.025o and the spatial sampling on the Earth surface is 4 km 
at Nadir. The spatial sampling increases up to typically 7-8 km in Central Europe, 12 km in the 
Baltic region and exceeds 20 km as the instruments observes in the outer part of the disc, e.g. 
at higher latitudes in Europe(Figure 2). 
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Figure 1: MTG-IRS dwells and Local Areas Coverage 
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Figure 2: Quickview of IRS pixel on-ground dimension [km] 
  

2.4 A major innovation with strong applicable hyperspectral infrared heritage 
MTG-IRS will provide information on atmospheric thermodynamic parameters at an 
unprecedented vertical resolution combined with high horizontal (4 km at Nadir) and temporal 
sampling (30 minutes over Europe) due to its position in a geostationary orbit and hyperspectral 
information content. This represents a major innovation in an operational observing system and 
will be an important direct contribution to regional short-range weather forecasting and 
nowcasting, in complement to the traditional high spatial and temporal broadband imagery 
from geostationary orbit, which cannot provide as much atmospheric information in the 
vertical. 
 
While the very first experience to date of a high resolution imaging-spectrometer in a 
geostationary (GEO) orbit is just being made with the FY-4/GIIRS Chinese mission, there is a 
long and strong operational heritage of hyperspectral sounding from space in Low Earth Orbits 
(LEO): e.g. with the EUMETSAT Polar mission IASI [Blumstein et al. 2004] or with the 
NASA/NOAA missions AIRS [Aumann et al. 2003] and CrIS [Han et al. 2013]. Their respective 
level 1 products belong to the same family of observations, i.e. highly spectrally resolved top-
of-atmosphere calibrated infrared spectra. Assuming that the IRS L1 processing includes inter-
pixel harmonisation and reduces instrument signatures, assuming also that an apodisation 
function can be coordinated between RTM developers and products Users, the IRS spectra 
from any pixel can be treated the same and a large part of the experience made in operational 
data assimilation and level 2 processing with AIRS, IASI and CrIS is directly applicable to 
IRS.  
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The present ATBD describes the IRS L2 Day-1 operational baseline algorithms, which expand 
upon the operational heritage of IASI L2 products processing at EUMETSAT. The rationale 
and motivation for this approach are manifold: to take advantage of the demonstrated 
operational experience with processing data of the same class, to ensure products consistency 
from EUMETSAT hyperspectral missions to the Users and to optimise scientific algorithms 
and software maintainability. There are also differences between these missions and specific 
aspects of MTG-IRS, which need dedicated attention to exploit the mission to its full extent in 
view of the targeted applications. 

2.5 Specificities: limitations and opportunities 
The IRS and its LEO predecessors have different acquisition principles, with viewing geometry 
spanning different ranges (reaching quasi limb in the case of IRS), yielding different spatial 
resolution and temporal sampling. Also, the observations are processed at different spectral 
resolution and coverage. The consequences in terms of opportunities, limitations or relative 
sounding performances expected for the IRS products services and the need to adapt heritage 
or study new algorithms are summarised in the following subsections. They are taken into 
account in the description of the present IRS L2 baseline for Day-1 and in the developments 
and study plan for future evolutions after instrument commissioning. The table below provides 
an overview of the main characteristics of the EUMETSAT LEO and MTG-IRS hyperspectral 
missions. 
 

 MTG-IRS IASI IASI-NG 
Orbit Geostationnary 

Sub-satellite: 0°N;0°E 
Low Earth Orbit 
Sun-synchronous 
9:30 MLST 

Low Earth Orbit 
Sun-synchronous 
9:30 MLST 

Instrument type Michelson Michelson Mertz interferometer 
MOPD ~0.828 cm 2 cm ~4 cm 
Spectral 
sampling 

~0.6 cm-1 0.25 cm-1 0.125 cm-1 

Spectral 
coverage 

LWIR: 700-1210 cm-1 
MWIR: 1600-2175 cm-1 

645-2760 cm-1 
in 3 continuous bands 

645-2760 cm-1 
in 4 continuous bands 

Detector array 160 x 160 2 x 2 4 x 4 
Pixel size 4 km (~7 km central Europe) 12 km (40 km swath edge) 12 km (40 km swath 

edge) 
Spatial sampling Contiguous pixels Pixel separation ~20 km at 

Nadir 
Pixel separation ~24 km 
at Nadir 

Scan geometry Overlapping images, from 
step and stare dwells 
From Nadir to quasi-limb 
views on disk edges (local 
zenith angle ~90°) 

30 steps across track. 
 
From Nadir to ~60° local 
satellite Zenith angle 

14 steps across track. 
 
From Nadir to ~60° local 
satellite Zenith angle 

Acquisition 
frequency 

Every 30 min over Europe. 
Full disk possible within 1h. 
6h repeat cycle for full disk 
including the Southernmost 
LAC 

Twice per day 
(more frequent revisit over 
the Poles) 

Twice per day 
(more frequent revisit 
over the Poles) 

Table 1: EUMETSAT hyperspectral sounders characteristics 
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2.5.1 Spectral coverage and resolution 
Figure 3 shows the comparative spectral coverage of EPS/IASI and MTG-IRS together with 
the main geophysical information content. Because of the coarser spectral resolution and 
sparser coverage (see Table 1), the absolute sounding performances in terms of precision and 
vertical resolution will be slightly less with IRS than with IASI. A first theoretical assessment 
of relative performances for temperature, humidity and ozone is documented in . IRS can be 
expected to have one degree of freedom less than IASI in the troposphere for temperature and 
for water-vapour. Above 100 hPa, IRS will have only half the information content of IASI for 
temperature. 
 
In addition to the thermodynamic profiles, the spectral coverage of MTG-IRS includes 
information about a number of atmospheric species. It is expected that ozone profiles from IRS 
are of slightly less but similar vertical resolution, nominally around 3 independent pieces of 
information and some relatively weak sensitivity in the lower troposphere. The IRS 
observations should allow also some quantitative estimates of the CO and NH3 columns. 
Qualitative detection of SO2 and ash in volcanic plumes is expected with IRS observations, 
using the weak ν1 band of SO2 (1100-1200 cm1). However, quantification and height 
assignment for SO2 and vertical resolution of CO profiles will only remain possible with IASI 
due to its larger spectral coverage (including the stronger SO2 ν3 band 1300-1400 cm-1 [Clarisse 
et al. 2012]) and higher spectral resolution. 
 

 

Figure 3: Comparative spectral coverage of IRS and IASI 
 

2.5.2 No microwave instrument companion, higher sensitivity to clouds 
The hyperspectral sounding Polar missions have been flying together with microwave (MW) 
sounders, (e.g. IASI with AMSU/MHS, AIRS/AMSU, CrIS/ATMS). These provide important 
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information in the presence of clouds as it is possible to sound the atmosphere within and below 
clouds in the microwave domain. Unlike its low-orbiting predecessors where synergistic use 
of MW and IR hyperspectral observations has been extensively made from LEO to maximise 
the yield and quality of the atmospheric soundings [IASI L2 PGS][NuCAPS ATBD][Susskind s. 2003], 
the MTG-IRS L2 processing will be IR-only, as MTG do not carry microwave sounding 
instruments. 
 
In the case of opaque clouds, only the cloud top and the atmosphere above account for the top 
of atmosphere radiances in the thermal infrared. Also the operational exploitation of pure 
infrared hyperspectral data in partly cloudy scenes or with semi-transparent clouds is still an 
active area of research and development because of the difficulty to model the cloud 
microphysics and radiative transfer therein. However, relevant experience has been made with 
the IASI L2 operational processor, which also has an IRonly fall-back mode when MW data 
are unavailable. Specific developments were carried out as part of IRS preparatory activities to 
consolidate and characterise the retrievals in the IR-only mode, which are summarised in 
EUM/RSP/VWG/17/948734. As expected, the yield with highest quality products is less in IR-
only than in MW+IR, but IR-only retrievals of good quality are also possible in cloudy pixels 
with the IASI L2 operational algorithm. 

2.5.3 Viewing geometry, from Nadir to quasi-limb viewing 
As illustrated in the Figure 4, EPS/IASI and MTG-IRS have a different viewing geometry. The 
local satellite zenith angle of IASI (and similarly for AIRS and CrIS) of targets on Earth ranges 
between Nadir and approximately 58° because of its swath geometry. MTG-IRS will however 
observe the Earth from a Nadir view at sub-satellite point (SSP) to a quasi-limb mode as the 
target point gets close to the limit of the visible disk. Figure 5 presents the variation of the IRS 
local satellite zenith angle (z� in Figure 4) as a function of the angular distance between the 
target point on Earth and the sub-satellite point (α� in Figure 4). When IRS points along the 
Greenwich meridian, α� is approximately equal to the latitude of the observed point. 
 
The blue circle in Figure 6 shows the area where the local satellite zenith angles of IRS will be 
within the range of IASI’s zenith angles or in other words, the range of viewing angles where 
the retrieval algorithms have been demonstrated in operations with the Polar mission. The 
orange and red circles indicate the respective limits of assimilation of MSG/SEVIRI radiances 
in numerical weather prediction models (up to 68° zenith angle) and of the production of 
operational global instability index (GII) products at EUMETSAT (up to 74° zenith angle). It 
is assumed that the IASI L2 processing concept can be applied ‘as is’ beyond the 58° local 
zenith but recent studies [Bormann 2016][Goukenleuque et al. 2017] have shown that the slant 
geometry should be taken into account when the local zenith angles reaches 60 to 65°. 
 
In general, exploiting IRS observations at high slanted views –corresponding to a large portion 
of Europe- will require dedicated studies, for instance to account for possible variation of 
surface emissivity or to characterise the actual sounding capabilities (precision, vertical 
sensitivity and resolution) as Jacobians shift upwards and change shapes at high angles (Figure 
7). The fast radiative transfer model RTTOV already includes spherical geometry and can be 
trained up to 85° local zenith angle. IRS-specific studies have been made already with a 
preliminary set of coefficients for IRS, including high zenith angles, as supplied by the NWP 
SAF on special request. 
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Figure 4: Viewing geometry principles for IRS (top) and IASI (bottom) 
 

 
𝛼𝛼� (deg.) 

Figure 5: IRS local zenith angle at target on Earth (𝒛𝒛� in Figure 4) as a function of angular distance from 
sub-satellite point (𝜶𝜶� in Figure 4). 

 
Another complication with the IRS viewing geometry, as with any geostationary mission, is 
the parallax effect, which will not be negligible for a large part of the European domain. 
Although this is still ignored at this stage in the treatment of IASI at large scan angle and in the 
exploitation of SEVIRI in NWP or to generate SEVIRI GII or cloud products, a parallax 
correction is foreseen in the IRS L2 processing to provide atmospheric profiles at the vertical 
of the target point to the users (see section 3.10 and Figures 27 and 28).  
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Figure 6: Areas corresponding to the maximum local zenith angle with IASI (within the blue disk), used for 
assimilating MSG/SEVIRI radiances in NWP models (orange) and deriving instability indices from SEVIRI 
(red). The purple line shows the 85° zenith angle limit of applicability of RTTOV (nearly on disk edge in the 
left panel). 
 

 

Figure 7: Examples of IRS Jacobians for temperature (left panel) and water-vapour (right) at different viewing 
angles. 

2.5.4 Spatial resolution and coverage 
IRS will provide contiguous pixels (i.e. effectively forming images) covering entire scenes at 
high spatial resolution (4 km at Nadir) while the Polar hyperspectral missions, e.g. IASI or 
CrIS, have a coarser spatial resolution (12 km at Nadir, up to 40 km at swath edges) with also 
a sparse coverage (see illustration in Figure 9). The PWLR3 algorithm (see PWLR3, §3.6.1.4), 
which exploits adjacent observations to make or regularise retrievals in individual pixels and 
was demonstrated in the IASI L2 processing is expected to be even more beneficial in the 
context of MTG-IRS. Furthermore, the data volume is higher by two orders of magnitude with 
IRS and requires CPU-effective processing algorithms, such as the PWLR3. 
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The variation of IRS pixel size within the visible disk is shown in the Figure 2, where it can be 
seen that the spatial resolution of 4 km at satellite sub-point in Africa will vary between 6 and 
8 km in Western and Central Europe and reach about 12 km in the Baltic region. This and the 
spatial density with 160x160 adjacent spectra however represent major innovations as 
compared to the predecessor hyperspectral missions, whose footprint ranges in size between 
12 km at Nadir to 40 km at swath edge. 
 

 

Figure 8: Average cloud-free pixel percentage as a function of pixel size, from [Wang et al. 2016] 
 
This unprecedented spatial sampling from space with a hyperspectral instrument will be 
directly beneficial to resolve finer geophysical structures. In addition, compared to the LEO 
missions, smaller pixels such as IRS’ –and higher coverage density- increase the likelihood of 
sensing cloud-free scenes by 50 to 70% (see Figure 8, [Wang et al. 2016]), where hyperspectral 
IR L2 products are usually of best quality and where maximum information is assimilated in 
numerical models. The frequent sensing allows the look at atmospheric processes, which is a 
decisive assets of IRS and the main benefits of the mission. 

2.5.5 Temporal sampling 
As per User requirements, Europe (LAC 4) will be observed every 30 minutes, hence providing 
considerably more observations than from the LEO platforms, which revisit the same place 
only twice a day. Figure 9 sketches the spatio-temporal resolution of MTG-IRS and IASI 
acquisitions. 
 
The frequent sensing over Europe increases the chances of clear-sky observations of a given 
point throughout the day. In addition, although not foreseen in the Day-1 baseline, it may be 
beneficial to exploit the frequent temporal sampling, for instance by using the retrievals from 
the previous scan as a starting point or a priori for the retrieval in the following. More 
sophisticated algorithms implementing Kalman filters could also be advantageously 
considered, following recent promising results with land surface emissivity retrievals from 
hyperspectral sounder data [Gray and Pavelin 2017]. Exploitation of the temporal information is 
considered a Day-2 activity and should include also possible developments of the statistical 
method in the temporal domain. It is noted that the frequent temporal sampling over Europe 
will also allow monitoring the self-consistency of the products with the previous observations. 
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Figure 9: Simulation of an IRS scene using high resolution model data from Meteo-France, with realistic 
dwell limits (pink and blue) and IASI footprints from real observations in that area (black ellipses). 
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3 DAY-1 PROCESSING SEQUENCE 

3.1 Common HSIR L2 approach 
This MTG-IRS L2 ATBD builds on a common hyperspectral infrared (HSIR) Level 2 
approach, which has been operationally demonstrated for IASI and is also the basis for the 
IASI-NG L2 processing. The rationale is to operate consistent L2 products from the three 
EUMETSAT hyperspectral sounding missions where commonalities exist and hence optimise 
use of resources during development, operation and maintenance of their processing algorithms 
and software. Despite differences between the three sensors (IASI, IASI-NG, MTG-IRS), a 
major part of the processing can be accomplished with generic software libraries applicable to 
all HSIR missions. Synergy can also be achieved in other technical elements for instance 
related to the off-line calibration of the retrieval algorithms, such as training software and 
databases. 
 
 
In this general algorithm approach,  a first retrieval is performed with a piecewise linear 
regression (PWLR) method at individual pixel resolution, under all cloud conditions ; Besides 
the geophysical state paramaters, the function returns reliable quality indicators (uncertainty 
estimates). In the case of MTG-IRS, the method is intended to apply to all LACs for near-real 
time processing. This step is followed by a cloud detection and characterisation in terms of 
effective fractional coverage and cloud top height, with a variational method. A dust indicator 
completes the scene characterisation. In clear-sky pixels, a second retrieval is performed with 
optimal estimation method (OEM) with the objective to refine the retrieved quantities from the 
first retrieval.  
 
In general, the MTG-IRS and Polar sounder level 2 algorithms have in common extensive 
application of principal components analysis (PCA) in the radiance and state vector spaces and 
the use of reconstructed radiances in variational methods to fully exploit the measurements 
while keeping dimensionalities low. 
 
The present ATBD includes specific algorithms and configurations tailored to IRS. These are 
required by the nature of the mission, like the correction for the geometry (see §3.10.1) and 
due to its specific objectives, like the computation of convective parameters (see §3.10.3) or 
the configurable choice of the a priori in the variational methods (see discussion in §3.8.2). 

3.2 Processor inputs 
The main input data to the IRS L2 processing are the IRS L1 radiances represented as principal 
components (PC) scores, which is the baseline for NRT dissemination. The reader is referred 
to the MTG-IRS L1 ATBD [IRSL1ATBD] where the principles of the principal components 
analyses are recalled and where details of the specific processing for IRS are provided. 
Furthermore a static auxiliary dataset is used to configure the processing and a digital elevation 
model is used to derive the land fraction and surface elevation (mean and standard deviation) 
within each pixel. 
 
Forecast fields from ECWMF are also taken as input to the processing and are collocated with 
the IRS pixels. They can optionally be replacing the PWLR profiles as a priori for the optimal 
estimation. They may be used also to flag the situations where numerical weather forecasts and 
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IRS L2 products significantly depart from each other, which could indicate areas where special 
attention is also required.  

3.3 Output end-products 
The end-products are organised in topical groups as summarised in the following table. The 
retrieved geophysical parameters and the estimates of the posterior error covariance matrix 
(from the OEM) are stored in separate products files. Preliminary products content tables are 
indicatively provided in Appendix C. They will be detailed in Products Format Specifications 
documents. 
 

Short description Content Purpose 
Atmospheric 
Temperature and 
WaterVapour 
profiles 

‘All-sky’ first retrieval + quality indicators 
Clear-sky variational retrieval 

NRT 
Dissemination 
Archive 

Surface parameters Skin surface temperature over ocean (SST) and 
continental surfaces (LST) 
Land surface emissivity in selected channels (of 
the order of 10), from which the entire spectrum 
can be reconstructed by application of PC 
transformations 

NRT 
Dissemination 
Archive 

Cloud products Cloud detection 
Cloud top pressure and effective fractional 
coverage 
Cloud phase 
Dust indicator 

NRT 
Dissemination 
Archive 

Atmospheric ozone 
profiles 

‘All-sky’ first retrieval + quality indicators 
Clear-sky variational retrieval 

NRT 
Dissemination 
Archive 

Convective 
parameters 

Collection of instability indices and integrated 
quantities to support the assessment of potential 
convective initiation 

NRT 
Dissemination 
Archive 

Error covariance 
matrix 

Is the theoretical posterior error estimate 
computed after Rodgers [Rodgers 2000] for the 
parameters retrieved with the OEM: temperature, 
humidity, ozone 

Archive 

Table 2: List of IRS L2 products 
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3.4 Processing sequence overview 
The five main processing steps are:  

I. Pre-processing (PREP) 
• Collocation of elevation and land/sea mask 
• Collocation of NWP forecast (optional a priori information) 

II. First retrieval, statistical method (PWLR) 
• Fast all-sky statistical retrieval of T, W, O, emissivity, 𝑇𝑇𝑆𝑆 and cloud signal. 
• Retrieval includes reliable quality indicators (error estimates) for each of the retrieved 

parameters.  
III. Cloud retrieval/detection (CLOUD) 

• 1D-var retrieval of effective cloud fraction and cloud top pressure of up to two cloud 
layers using the simple cloud parametrisation of RTTOV as forward operator and 
analytic expressions for optimal effective cloud fractions for given cloud top 
pressures. 

• Cloud phase by simple brightness temperature difference tests 
• Dust index by linear regression 

IV. Second retrieval, optimal estimation (OEM)  
• Clear sky optimal estimation of T, W, Ozone, (CO2 as optional by-product of T), 

emissivity. 
• Measurement represented as channel subset of reconstructed radiances additionally 

filtered by forward model reconstruction to suppress instrument artefacts 
• PWLR retrieval or collocated NWP forecast used as a priori (and first guess) 

V. Post-processing 
• Reconstruction of the profiles at the vertical of the target point on Earth. 

 

 

Figure 10: High level overview of IRS L2 processing steps – the optional use of NWP forecasts in the cloud 
and OEM retrieval steps instead of PWLR3 profiles is indicated with the dash yellow box 
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3.5 Pre-processing 

3.5.1 Input preparation and collocation 
The purpose of the input data preparation and collocation is to gather MTG-IRS measurements 
and relevant collocated data in a common file, which serves as input for the further sub-
functions.  
The collocated data include ECMWF forecast data as well as land fraction and surface elevation 
mean and standard deviation within each MTG-IRS field of view. 
Most of the data are organised according to IRS scan line (LINE) and pixel number (PIX). The 
collocated ECMWF forecast data are an exception, here the fields are kept at the original 
ECMWF grid points, but only grid points within a rectangular area covering the current IRS 
dwell are retained. This allows for posterior application of different method of collocation, 
such as nearest neighbour vs bilinear interpolation or along slant path or vertical. The 
collocation of ECMWF forecast fields is detailed in the section 3.5.4. 

3.5.2 Acceptance of L1 measurements 
This function identifies the pixels which can be used for retrieval by examining the quality 
flags of the Level 1 processing and checking that the measurements as well as the geolocation 
and sun and satellite angles are within the expected bounds. 
 
The input to the IRS L2 processor are the IRS principal components scores (PCS) products, as 
disseminated in near-real time to the users. The L2 retrieval functions requiring principal 
components scores as inputs will directly take these scores from the IRS PCS products. 
 
For the L2 retrieval functions requiring radiances in selected channels, a reconstruction of the 
IRS radiances from the PCS in the corresponding channels will be performed as explained in 
[IRSL1ATBD]. The reconstruction operator from scores to radiances shall include the linear 
transformation to compute apodised radiances consistently with the radiative transfer model 
used in the L2 processing. A reconstruction operator including same apodisation as in RTTOV-
IRS is planned by NWP SAF in the IRS-PP, the IRS post-processing package [IRS MAG 5]. 
 

3.5.3 Collocation of Digital elevation model and land-mask 
This step is performed in order to produce the mean and standard deviation of the surface 
elevation within each pixel as well as the land fraction. To avoid inconsistency the same atlas 
should be used for the land fraction and the surface elevation. To be in line with the 
specification for IASI-NG, we propose to use the ACE-2 30” database [ACE-2], which provide 
surface elevations on a global longitude/latitude regular grid with a resolution of 1/120 degrees 
and in which sea surface locations are distinguished with a special value (-500). However 
another atlas may be considered depending on the experience made with this atlas and on 
potential drivers for common atlases in the MTG programme. 
 
As a simple approximation for this purpose, we will assume that the IRS point spread functions 
are rectangular, uniform, contiguous and non-overlapping. In this way the point spread 
functions (PSF) can be regularly sampled in a (LINE, PIXEL) coordinate system, where all 
points have equal weights. In each dwell the geolocations of all pixels are transformed into 
Cartesian coordinates and used to derive by regression a linear relation between the (line, pixel) 
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coordinates and the geolocation. This allows to get the longitude and latitude of all PSF sample 
points (after conversion back from Cartesian coordinates) such that they can be looked up in 
the ACE-2 atlas. Then it is a simple matter to compute the mean and standard deviation of the 
surface elevation as well as the fraction of the field of view which is covered by land. 

3.5.4 Collocation of NWP forecasts 
In this step the ECMWF NWP forecast data within a rectangular area fully covering the current 
dwell are extracted and written to the PREP file at the original horizontal and vertical sampling 
closest to IRS resolution. The relevant variables are: 

1. Temperature 
2. Specific humidity 
3. Ozone Mass Mixing ratio 
4. Skin temperature 
5. 2m Temperature 
6. 2m Dew point temperature 
7. Surface pressure 
8. 10 m U-velocity 
9. 10 m V-velocity 

 
It is planned to make use of the best affordable forecast temporal and horizontal sampling, 
using EMCWF fields in their full vertical resolution on hybrid levels. Based on the experience 
with EPS, 3h-forecasts at 0.125° sampling in the horizontal are planned at the minimum, with 
ECMWF data files being delivered at step 06, 09, 12, 15, 18, 21, 24 and 27 twice a day (from 
the two analysis cycles at 00 and 12 UTC), as shown with boxes in Figure 11. In this figure, 
the red line corresponds to the sensing time (t) in the timelines. The closest in time surrounding 
forecasts from the most recent analysis are linearly interpolated in time to the sensing time (t, 
in red in the figure). In this example, the first surrounding forecast (t0, violet in the figure) was 
not available from the 12UTC analyses and is taken from the older analyses. The second 
surrounding forecasts (t1, green in the figure) is available from the most recent analyses. 

 

Figure 11 ECMWF forecast files sequence and selection for interpolation to sensing time t (red line). 
 
The output variables written to the PREP files are obtained from two forecast fields by linear 
interpolation in time. These two forecast fields are chosen such that one has validity time before 
the sensing time of the granule and the other has validity time after, while both having validity 
time as close as possible to the sensing time. In case of draws, the field with the most recent 
base time is preferred. 
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The collocated forecast data are to be used online if the L2 processor is configured to use 
forecast as a priori in the optimal estimation. The profiles should be extracted along the slant 
paths (see Figure 12) from the data retained in the PREP files, to avoid errors of using a vertical 
profile in the calculated TOA radiances [Bormann 2016] and [Goukenleuque et al. 2017]. 
 

 

Figure 12: Observed slanted profile (red) and vertical 1D profile (green) as stored in the forecast data. 
 
The construction of the slanted profile is performed as follows: 

i. Determine the surface pressure and temperature corresponding to the centre of the 
IRS pixel, from the nearest forecast fields. 

ii. Determine the altitude of the pressure levels used in the OEM retrieval with RTTOV 
as explained in the pressure to height conversion in §4.3, with the inputs from the 
above point and the altitude from §3.5.3. 

iii. Determine the geolocation at the vertical of these pressure levels as explained in 
§4.16, with the altitudes computed above, the satellite viewing angles, the pixel 
geolocation and the surface elevation. 

iv. Identify the nearest grid point in the forecast grid for the sub-profile points and 
interpolate the vertical profiles from the nearest forecasts to the corresponding 
pressures, as described in §4.1. 

 
In order to minimise computation costs and assuming that the spatial sampling of the forecast 
fields is at least of 0.125°, the horizontal collocation in the steps i to iv can be performed with 
the nearest neighbour. 

3.6 First retrieval: PWLR3, an “all-sky” 3D statistical retrieval 
This section describes the first retrieval, which is based on a statistical algorithm. It first 
introduces the concept and rationale behind the algorithms choices (3.6.1) and presents in 
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details the actual retrieval of the geophysical parameters and associated quality indicators as 
well as the method and dataset to compute the algorithm configuration (3.6.2). 

3.6.1 Algorithm concept and rationale 

3.6.1.1 PieceWise Linear Regression: a non-linear statistical retrieval 
Statistical retrieval methods model the statistical relationship between the observations and the 
parameters to be retrieved based on a large representative dataset. They are popular inverse 
methods for atmospheric sounding, with long heritage [Smith and Woolf 1976]. Statistical 
methods are intrinsically much faster than so-called physical methods, where the physical 
processes in the radiative transfer are modelled in parametric equations and inverted directly 
or in an optimal way. The latter methods require explicit forward computations with a radiative 
transfer model (RTM) as part of the retrieval process, and RTMs are usually the bottleneck in 
terms of floating-point operations. 
 
The top of the atmosphere radiances observed by hyperspectral sounders are a complex 
function of the geophysical parameter state vector to be retrieved. Furthermore, the problem is 
ill-posed. Different state vectors can result in the same TOA observation, there is hence not a 
unique state vector corresponding to a given observation. Often, a statistical method has been 
used to provide a first-guess state vector to an optimal estimation method [Zhou et al. 2007], 
[Susskind s. 2003], [August et al. 2012], [NuCAPS ATBD], solving the non-linear problem in an 
iterative manner [Rodgers 2000]. 
 
In some cases the relationship between the observations and the geophysical parameters is 
modelled with linear functions, possibly distinguishing different sensing regimes e.g. under 
clear/cloudy conditions or at different viewing angles [Zhou et al. 2005], [Smith et al. 2012]. The 
linear model is obtained in a so-called training phase, by regression between the predictors, 
usually consisting of the measurements represented as principal component scores, and the 
target geophysical parameters. Artificial neural networks (ANNs) are another kind of statistical 
methods, which have also been extensively used to retrieve geophysical parameters from 
hyperspectral sounders [Hadji-Lazaro et al. 1999], [Blackwell et al. 2005], [Crevoisier et al. 2009], 
[Han and Sohn 2013], [Susskind et al. 2014], [Whitburn et al. 2017]. Like the linear methods, ANNs are 
statistical regressions between inputs and outputs, with the additional possibility to model non-
linearities in the relationship as observed in the training sample [Le Cun et al. 1998].  
 
With the piecewise linear regression (PWLR), the overall non-linear relationship between 
observations and state vector parameters is approximated by multiple linear models, in different 
classes. If the classes are sufficiently small, this retrieval method can be shown to be equivalent 
to optimal estimation: “Thus linear MAP [maximum a posteriori] solution can be regarded as 
a simulation of a multiple regression method where coefficients are found which best relate the 
state to the measurements” [Rodgers 2000]. Figure 13 illustrates the concept of piecewise linear 
regression, specific detailed description of the clustering in this context is provided in section 
3.6.2.5. The leading principal components scores of the measurements are used as input to the 
PWLR retrieval. This is to remove the collinearity, which would be present if all channel were 
to be used as predictors, and also consequently reduces the dimensionality (typically by one to 
two orders of magnitude). As compared to using a channel subset, this also reduces the 
influence of instrument random noise, which is filtered to a large extent by excluding the higher 
order principal components from the retrieval [IASI PCC val]. It was introduced in the release of 



EUM/RSP/TEN/17/935387 
v1F e-signed, 16 September 2021 

MTG-IRS L2 ATBD 
 

 

Page 28 of 103 

 

the EPS/IASI L2 operational processor version 6 in 2014 and has proven a very accurate, 
precise [Boylan et al. 2016], [IASI L2 v6 val], [Roman et al. 2016], [Feltz et al. 2017] and fast retrieval 
method. 

 

Figure 13: Piecewise Linear Regression concept. Linear relationship is modelled in different classes of 
observations, here illustrated with the 3 segments. In real product processing, the clustering is based on the 
observations by application of k-mean techniques.  

3.6.1.2 Training with real observations 
All statistical methods require an offline training phase, where the statistical relationship 
between predictors and target parameters is inferred from a large set of correlative input/output 
pairs. The training set must be representative of the range of atmospheric situations that the 
instrument will sense during its operations. One approach consists in building a synthetic 
training set with a representative geophysical database, like for instance [Chevallier 2002], and in 
simulating the corresponding radiances with a radiative transfer model. Errors associated to the 
forward model become a limitation with this approach. These are for example coming from 
underlying spectroscopic uncertainties, inaccurate representation of the surface emissivity 
properties and in general the variation of static (i.e. non-retrieved) species which are not taken 
into account in the training simulations. Also, importantly, forward modelling of hyperspectral 
infrared cloudy radiances is still an active subject of research and the uncertainties in RTM 
cloudy simulations are usually much higher than in clear-sky. 
 
Aiming at accurate retrievals in clear and cloudy scenes, the piecewise linear regression 
approach for hyperspectral sounders at EUMETSAT is trained with real observations 
associated with the best available co-located description of the atmosphere. Typically 107 to 
108 teaching pairs are used in the training, from randomly selected days covering whole 
seasonal cycles. In the EPS IASI operational context, they consist for instance of IASI 
observations with collocated re-analysis fields from ECMWF. If the relationship in a regression 
class consisting of similar observations is close to linear and the collocated fields have random 
errors, it is natural to expect that the resulting regression will be more precise than the training 
target set, which is illustrated in the Figure 14. If however the training base was biased with 
respect to the truth, the statistical method trained with such a dataset would inherit also the 
same bias (see Figure 14, right-hand side). This can be avoided by correcting the training set 
for known biases, prior to the regression, as it must be done for the training of the land surface 
temperature (see details in 3.6.2). It must be noted that regression trained with synthetic data 
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may introduce biases into the retrievals, when biases between observed and calculated 
radiances (see Appendix D) are not properly accounted for. 
 
For IASI, 200 PC scores in total are used for regression in different regression instances. These 
numbers are determined empirically at this stage. 
 

 

Figure 14: Linear regression (plain blue) modelling true (dashed green) function from experimental 
collection of input/target pairs (red dots) in an unbiased (left) and a biased (right) sample. 

3.6.1.3 Defining the regression classes 
Different sets of coefficients are often derived for different retrieval classes, for instance for 
different viewing angle classes [NuCAPS ATBD] or different day/night or regional classes 
[Milstein Blackwell 2016], [Jang et al. 2017]. While such stratifications intend to specialise the 
retrieval function to some observation regimes and hence to seek better performances, there is 
a risk of spatial discontinuity of the retrievals at the class edges, e.g. at latitude bands borders. 
Furthermore, a training set “specialised” for a given regional box may actually include very 
different atmospheric situations (e.g. dry hot scenes and cloudy atmospheres, high-shooting 
clouds…), which will limit the validity of a linear regression model but also the effectiveness 
of non-linear inference due to the large heterogeneity of the scenes. 
 
Instead, the present PWLR approach relies on a fine stratification which is based on the 
observations themselves. This aims at grouping meteorological situations corresponding to 
similar types of observations in the same training subsets, regardless of their actual location on 
Earth or time of the year. Within these subsets of the overall training set, we can see that the 
linear model is a more valid approximation. The classification itself is obtained with the k-
mean clustering technique [MacQueen] applied to a subset of the leading PC scores. Figure 15 
illustrates the result of such a clustering with IASI data from ascending nodes, where each 
colour corresponds to a particular class identifier. 
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Figure 15: An example of PWLR clustering based on IASI observations. 
 
To reduce random errors, the overall retrieval is obtained by averaging a number of ensemble 
retrievals, which are based on different instances (or realisations) of the coefficients. These 
instances are all similar, but clearly in order for the ensemble approach to be beneficial, they 
must be different and result in retrievals errors which are not fully correlated among the 
instances. This is achieved by varying the number of predictors (and possibly their relative 
scaling) which are used in the clustering and/or by using different subsets of the overall training 
set. For instance for IASI in IR-only model, four different regression instances are obtained by 
clustering using the first 6 and 9 PCS in the common directions to the adjacent pixels (see 
§3.6.1.4) and with two halves of the overall training set. 

3.6.1.4 The PWLR3, a 3D retrieval 
The PWLR3 (PWLR-cube) is the latest evolution of the PWLR algorithm tailored for IASI 
[Hultberg and August 2015]. It exploits measurements from a group of adjacent pixels to perform 
retrievals in each of the individual pixel. The rationale is to take advantage of the horizontal 
correlations that exist in the atmosphere to bring additional information in a given pixel from 
its neighbourhood. Let us consider for instance the situation where some pixels are fully or 
partly covered by clouds. The information below the cloud level coming from the clear-sky or 
from less cloud-affected adjacent pixels can be exploited. The 3D correlations, which are 
exploited in this approach, have a regularising effect in the vertical as well as in the horizontal 
on the solution across all adjacent pixels.  
 
It is interesting to note that the principal components corresponding to the measurements of a 
group of adjacent pixels can be clearly divided into two different types, which either capture 
features which are common for all the pixels or capture interpixel differences. In Figure 16 and 
Figure 17 the two type of PCs are illustrated. 
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Figure 16: Maps of principal component scores in common (in PC #2, left) and interpixel differences (in 
PC #3, right) directions of 4 adjacent IASI pixels. 

 

 

Figure 17: Eigenvectors for IASI pixel (IFOV) quadruplets, 
carrying common (EV1-2) and interpixel (EV3-6) information. 

 
This concept was introduced in the IASI L2 PPF v6.2 released in June 2016 and proved to yield 
more precise retrievals than the single-pixel-based PWLR approach [IASI L2 v6.2 val], 
[Sun et al. 2017]. The horizontal correlation of the atmospheric state vector being higher at 
smaller scales, it is expected that the benefits of exploiting adjacent information will be even 
more important for a spectro-imager like MTG-IRS, which has small and contiguous pixels as 
compared to IASI, whose pixels size and separation range between 12 and 40km. 
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The practicalities of applying the PWLR3 concept to IRS will be further studied, for instance 
to determine the size of the window where adjacent measurements are exploited, to determine 
the treatment of non-nominal cases (e.g. dwell borders, dead or bad pixels…). It is also 
envisaged with this approach to retrieve directly the atmospheric profiles at the vertical of a 
pixel centre and hence possibly to avoid reconstructing this information from slant retrieved 
profiles as discussed in section 3.10. 

3.6.2 Detailed description of the algorithm and configuration 

3.6.2.1 Training set 
The training set is composed of real measurements paired with collocated reference data for 
the parameters to be retrieved, which include: 

• temperature profiles (T), 
• water-vapour profiles, specific humidity (W) 
• ozone profiles (O), 
• surface skin temperature (Ts) 
• land surface emissivity E 
• surface pressure (Ps) 
• cloud signal (OmC, stands for Observed minus Calculated). 

 
To avoid overtraining when using a large number of regression classes and to avoid sensitivity 
to random errors in the reference data it is important that the training set is proportionally larger, 
by several orders. While it is hard to be more precise on the number of pairs (i.e. 
predictor/geophysical parameter) required in the training set, it is possible to check that the 
generated coefficients do not suffer from overtraining by applying them to independent data. 
As an example, the training of the IASI L2 PPF version 6.4 was done with 96 full days of IASI 
measurements spread out over two years, 2015 and 2016, for a total of about 100 million of 
training pairs of measurements and targets. 
 
The choice of the reference data to be paired with the measurements is important, since any 
systematic biases present in the reference data are inherited by the PWLR3. While the PWLR3 
method is sensitive to systematic errors in the reference data it is largely insensitive to random 
errors (see Figure 14), provided that the training set is big enough, e.g. statistically 
representative of the error probability density function. It is perfectly normal to achieve a 
retrieval precision which is better than the precision found in the training data.  
 
For the latest IASI training, the reference data of T, W and Ps is taken from the ERA-5 
reanalysis which incorporates the most recent model updates and is available at high temporal 
resolution. Currently the ERA-5 data are only available until the end of 2016, but it is foreseen 
that a continuous update providing so called ERA-5T data with a short delay of less than one 
week will be set up soon [ERA-5]. It would hence also be possible to use ERA-5 (or follow-up 
project) for training of MTG-IRS PWLR3 once the IRS measurement become available. The T 
and W profiles are retrieved at the 137 model levels at which they are provided in the ERA-5 
data with units of K and kg/kg respectively. W profiles are handled in log(W) for training and 
retrieval purposes.  
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The Combined ASTER and MODIS Emissivity over Land [CAMEL] database from University 
of Wisconsin is used as reference for emissivity. In the PWLR3 regressions, the emissivity is 
represented and retrieved in a limited number of principal components (typically less than a 
dozen), as done for instance in [IASI L2 PGS], [Pavelin and Candy 2013], [Zhou et al. 2011]. The full 
land surface emissivity spectra can then be expanded from the retrieved principal component 
scores; in particular at the selected channels needed in the subsequent retrieval steps (e.g. 
clouds or OEM) or to be written in the final IRS L2 product. Over maritime surfaces, no surface 
emissivity will be generated as a product. The analytical expression of the ocean surface 
emissivity built-in RTTOV is intended instead in the subsequent retrieval stages. 
 
The reference data for training the ozone (in log(kg/kg) ) is also taken from ERA-5 for now, as 
ozone fields from the Copernicus Atmosphere Monitoring Service [CAMS] did not yield as good 
a radiance fit to real observations. This is illustrated in the Figure 18 showing the standard 
deviation of clear-sky IASI observations (OBS) minus calculated (CALC) radiances over 
ocean, computed with different ozone sources and the same PWLR3 retrieved temperature and 
water-vapour profiles. The evolution of the two models for ozone will be monitored to guide 
the choice of the actual training set by the time of MTG-IRS launch. 
 

 

Figure 18: IASI observations (OBS) minus calculated radiances, using different collocated ozone sources 
(purple: CAMS analysis, blue: ECMWF IFS forecasts, red: ERA-5, black: retrievals based on ERA-5) 
 
 
This will be part of Commissioning activities to determine the first version of the coefficients 
for operational production. A rolling training mechanism is planned with updates for instance 
after typically a day, a week, a month, a season and a year. After a full seasonality, it is expected 
that only longer term updates will possibly be needed. This will be part of the product 
monitoring to continuously assess the applicability of the coefficients and trigger updates when 
needed. The lessons learnt from Metop-C, where a similar experience of a “cold start” will be 
made, will feed in the preparation of the initial calibration of IRS L2 statistical retrieval. 
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3.6.2.2 Examination and correction of the surface temperature in the training set 
The surface temperature (𝑇𝑇𝑆𝑆) from ERA-5 needs to be corrected to reduce some negative biases 
often observed in the ECMWF model data over land at daytime, especially over semi-arid 
regions [IASIB L2val], before it can be used as reference data. Using the observation in a single 
window channel together with the PWLR3 retrieved profiles and surface emissivity, it is 
relatively easy to detect pixels where the model 𝑇𝑇𝑆𝑆 is too low and compute a better estimate of 
𝑇𝑇𝑆𝑆 with the help of a forward model computation. The correction 𝛿𝛿𝑇𝑇𝑆𝑆, to be added to 𝑇𝑇𝑆𝑆 is 
simply the observed minus the (clear) forward model computed radiance divided by the 
corresponding 𝑇𝑇𝑆𝑆-Jacobian as written below. 

𝛿𝛿𝑇𝑇𝑆𝑆 = [𝑜𝑜𝑜𝑜𝑜𝑜𝑘𝑘 − 𝐹𝐹𝑘𝑘(𝑇𝑇,𝑊𝑊,𝑂𝑂 ,𝑇𝑇𝑆𝑆, 𝜀𝜀𝑘𝑘)] 𝐾𝐾𝑇𝑇𝑠𝑠,𝑘𝑘⁄  eq( 1) 
where 

- 𝑘𝑘 is the channel index 
- 𝐹𝐹𝑘𝑘 is the synthetic clear-sky radiance calculated with a radiative transfer model, here 

RTTOV 
- 𝑇𝑇,𝑊𝑊,𝑂𝑂3 are the temperature, humidity and ozone profiles, here from PWLR3 retrieval 
- 𝜀𝜀𝑘𝑘 is the surface emissivity, from built-in RTTOV function over ocean and from 

PWLR3 retrieval over land 
- 𝐾𝐾𝑇𝑇𝑠𝑠,𝑘𝑘 = 𝜕𝜕𝐹𝐹𝑘𝑘

𝜕𝜕𝑇𝑇𝑠𝑠
 is the Jacobian of the forward model to the surface temperature in the 

window channel 𝑘𝑘. 
 
While a positive correction 𝛿𝛿𝑇𝑇𝑆𝑆, in the absence of inversions in the T(p) profile, can be 
attributed to a too low model 𝑇𝑇𝑆𝑆, a negative value of 𝛿𝛿𝑇𝑇𝑆𝑆might just as well be a result of cloud 
contamination of the pixel as of a model 𝑇𝑇𝑆𝑆 which is too high. Therefore the correction is only 
applied if it is positive and significant, i.e. above 1 K. The latter condition is in order to avoid 
creating a warm bias as a result of only correcting upwards (where of course random errors are 
expected also for the unbiased areas). Furthermore we also avoid the correction in cold areas 
and areas of temperature profile inversion by only adding 𝛿𝛿𝑇𝑇𝑆𝑆 to 𝑇𝑇𝑆𝑆 if all of the four following 
conditions are met:  

i. 𝛿𝛿𝑇𝑇𝑆𝑆 > 1𝐾𝐾  
ii. 𝐼𝐼𝐼𝐼 < 1𝐾𝐾  

iii.   𝑇𝑇𝑆𝑆 + 𝛿𝛿𝑇𝑇𝑆𝑆 > 272𝐾𝐾  
iv. 𝑇𝑇𝑆𝑆 + 𝛿𝛿𝑇𝑇𝑆𝑆 >  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 1𝐾𝐾 

where 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the highest air temperature over the pixel between 260 hPa and the surface and 
𝐼𝐼𝐼𝐼 is the ‘inversion strength’ defined as the difference between 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and the surface air 
temperature (𝑇𝑇𝑎𝑎), e.g. at 2m or at the lowermost level. 
 
Although the surface emissivity is retrieved for the computation of the 𝑇𝑇𝑆𝑆 correction, it is 
prudent to use a window channel where the variability of the emissivity is low 
[Capelle et al. 2011]. The restriction to a single channel above was done to simplify the 
description, in practice we compute 𝛿𝛿𝑇𝑇𝑆𝑆 for more than one channel and use the average value 
in order to reduce random errors. Two channels at 819.5 and 831.75 cm-1 have proven to be 
enough in the context of IASI. 

3.6.2.3 Definition of the cloud signal parameter 
To explain the cloud signal OmC (for OBS minus CALC) to be retrieved by the PWLR3, we 
start by looking at a common cloud screening method in NWP and Level 2 data processing. It 
consists in comparing the observed window channel brightness temperature with the 
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corresponding brightness temperature computed by a forward model with clear-sky 
assumption. If the absolute value of the difference between the two is high, exceeding a 
configurable threshold, then the scene can be considered likely cloudy and be processed 
accordingly. 
 
For the forward model computation the best available profiles shall be used and often profiles 
from a short range forecast are used. However, even if fine scale vertical structures of the 
profiles are present in the forecasts but cannot be retrieved (because they do not affect the 
upwelling radiance), the broader vertical structures of the profiles are usually better captured 
by the retrievals (with less representation error), which do therefore exhibit superior OBS 
minus CALC statistics in clear sky (Figure 19). Retrieved profiles are hence better suited for 
the detection of clouds. 
 
In order to save online computation time during the Level 2 processing and possibly reduce 
random errors, the OBS minus CALC values described above are computed offline for all pairs 
of the training set and added to it in order to train the PWLR3 for OmC along with the other 
geophysical parameters. As for the 𝑇𝑇𝑆𝑆 correction (3.6.2.2) it is advisable to use an average value 
for two windows channels and we can use the same two centred at about 819.5 and 831.75 cm-

1. 
 

 

Figure 19: Standard deviation of OBS – CALC radiances computed over continental surfaces on 16/05/2016 
in the first two IASI bands. The inputs to the forward computations are collocated ECMWF forecasts + static 
emissivity atlas (black), PWLR (blue) and PWLR3 profiles and surface parameters retrievals (red). 

3.6.2.4 Computation of quality indicators 
Quality indicators provide important information for the users along with the geophysical 
retrieved quantities supplied in the products. Depending on their applications, the users might 
have different selection criteria, which does not necessarily relate to the cloudiness state of the 
scene unlike done in previous approaches with hyperspectral missions. We propose here to 
complement the retrieved state parameters with individual uncertainty estimates as quality 
indicators. 
 
The regression learns to estimate parameters based on a training set. A quality indicator 
sometimes used in regression is the static standard error of the estimates 
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𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 = �∑ (𝑁𝑁 𝑦𝑦� − 𝑦𝑦)2

𝑁𝑁
 eq( 2) 

computed in a given class (3.6.1.3) with the training set. 𝑁𝑁 is the training sample size, 𝑦𝑦� and 𝑦𝑦 
are respectively the regressed (i.e. retrieved) and the target training state parameters in that 
sample. 
 

 

Figure 20: Errors between true parameters (dots) and regression estimates (line) 
 
The quality indicators intended for IRS are based on estimates of the errors of the retrievals. 
These error estimates are retrieved by the PWLR3 method. To be able to do this, we need a 
training set of measurements and corresponding retrieval errors, for which we can use the 
collection of (𝑦𝑦� − 𝑦𝑦), in order to apply another regression to that training set and compute the 
error estimates online during the retrieval stage. However, if we could estimate the errors 
including their sign from the PWLR3 predictors, they would not be there in the first place. 
Instead we estimate the absolute value of the errors. The retrieval 𝑦𝑦� of the ‘primary’ parameters 
𝑦𝑦 is written as 

𝑦𝑦 ≈ 𝑦𝑦� = 𝑦𝑦� + 𝑅𝑅(𝑥𝑥 − 𝑥̅𝑥) eq( 3) 
with 𝑥̅𝑥 and 𝑦𝑦� being respectively the average predictors and dependent variables and 𝑅𝑅 being 
the regression coefficients. From this, it follows that the retrieval of the absolute errors 𝜀𝜀̃ can 
be written as: 
 

|𝑦𝑦� − 𝑦𝑦| = |𝑦𝑦� + 𝑅𝑅(𝑥𝑥 − 𝑥̅𝑥) − 𝑦𝑦| ≈ 𝜀𝜀̃ = |𝑦𝑦� + 𝑅𝑅(𝑥𝑥 − 𝑥̅𝑥) − 𝑦𝑦|������������������������ + 𝑅𝑅𝐸𝐸(𝑥𝑥 − 𝑥̅𝑥) eq( 4) 
where 𝑅𝑅𝐸𝐸 are the regression coefficients for the error estimate. Hence, for each of the primary 
retrieved parameters we can include coefficients to retrieve the estimate of the corresponding 
absolute errors, which, once included in the coefficients, are retrieved in exactly the same way 
as the primary parameters. 
 
An issue arises because the profiles are retrieved as PC scores (see §3.6.2.5) and it can be 
difficult to interpret the corresponding error estimates. Due to the fact that the error estimates 
apply to the absolute value, we cannot simply reconstruct the error profiles with the PCs as we 
do for the profiles themselves. Therefore in addition to the PC scores of the T and W profiles 
we also explicitly include the retrieval of the values and corresponding error estimates at 
selected model levels, to fulfil the need for a coarse uncertainty estimate profile expressed by 
Users. In this case we use the dew-point temperature for the water-vapour error estimates. . 
Similarly, the error estimate associated to the retrieved ozone profiles relate to the logarithm 
of the mixing ratio (ln(kg/kg) at selected levels. The table below summarises the definition of 
the quality indicators attached to the PWLR3 retrievals. 
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Parameter QI definition Units 
Temperature Error estimates at selected levels (typically 40, configurable) K 
Humidity Error estimates at selected levels (typically 30, configurable) K (Dew 

point) 
Ozone Error estimates at selected levels (typically 10, configurable) ln(kg/kg) 
Ts Uncertainty estimate of surface skin temperature K 
Emissivity Uncertainty estimate of the first emissivity principal component score - 

Table 3: Definition of the PWLR3 quality indicators 
 
Note that while the retrieval of the primary parameters is not sensitive to random errors in the 
training set, provided the size of the training set is large enough, this is not the case for the 
retrieval of the quality indicators. Since the quality indicators are estimates of the absolute 
errors in the training data, the random errors in the reference data contribute to these error 
estimates even though they do not correspond to errors in the actual retrievals. Thus the 
retrieved error estimates will generally overestimate the actual errors and more so the higher 
the random errors in the training set are. 

3.6.2.5 Detailed description of the retrieval algorithm 
The application of the PLWR3 retrieval algorithm is composed of three steps: 

a. the preparation of the input vector 𝑋𝑋 
b. the computation of the output vector 𝑌𝑌 (i.e. the actual application of the piecewise 

linear function) 
c. the interpretation of the output vector.  

 
It is a central concept of the PWLR3 approach that the profiles of each individual pixel is 
predicted from the measurement of this pixel as well as the measurements of a group of adjacent 
pixels. In a conservative MTG-IRS Day-1 approach consistent with the IASI and IASI-NG 
schemas we choose groups of 4 by 4 pixels as the basic unit of the retrievals. This means that 
each input vector carries information about the IRS spectra in 16 (4 by 4) pixels and that each 
output vector carries information of the profiles (and other output parameters of the retrieval) 
for the same group of 16 pixels. 

 

Figure 21: PWLR3 adjacent pixels grouping. Principal components of PCs in each individual IRS pixel are 
computed first in the 2x2-pixel quadrants (blue, green, red, yellow) and then combined again to form the 

inputs to the PWLR3 retrieval (white box).,. 
 
The full vector of input IRS PC scores for the 16 pixels would contain a big portion of co-
linearity coming both from the spectral correlation (between the two bands) and the spatial 
correlation (between the 16 adjacent pixels). It is therefore necessary to compute PC scores of 
the input PC scores. This should be done in two hierarchical steps as follows for improved 
computational efficiency and simpler handling of missing pixels (for example off disc pixels 
or pixels with bad quality spectra). First the PC scores in both band 1 and band 2 of each group 
of 4 adjacent (2 by 2) pixels are combined to a single set of PC scores, then the final set of PC 
scores for the 4 by 4 pixels is obtained by combining the 4 sets of the PC scores for 2 by 2 
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pixels computed in the first step. These final PC scores are supplemented in the input vector, 
𝑋𝑋, by the secant of the average of the 16 satellite zenith angles and the surface elevation in 
meters of the 16 pixels in order. The co-linearity introduced by the inclusion of 16 adjacent 
surface elevations is taken care of by using ridge regression for the computation of the 
regression coefficients. 
 
The input vector finally reads 

𝑥𝑥 = (sec 𝑧̂𝑧 ,ℎ1, … ,ℎ16,𝑝𝑝) eq( 5) 
where 𝑧̂𝑧 is the average satellite zenith angle, ℎ𝑖𝑖 is the elevation in pixel 𝑖𝑖 and 𝑝𝑝 are the principal 
component scores representing the 16 spectra in the PWLR3 4x4 group of pixels. 

 

Figure 22: PWLR3 retrieval sequence overview 
 
The algorithm is the same for all four LACs, but each of the four LACs is served by a different 
set of PWLR3 coefficients. In a given particular LAC we furthermore distinguish between four 
types of scenes each served by its own set of coefficients: Day-Land, Day-Sea, Night-Land and 
Night-Sea. If the average sun zenith angle of the 16 pixels is below 90 degrees Day coefficients 
are to be used (the Night coefficients are used when the average sun zenith angle is higher or 
equal to 90 degrees). The Sea coefficients are only to be used if all 16 pixels are over sea; if 
one or more of the 16 pixels are over land, the Land coefficients must be used. 
 
Once the scene type has been determined, a number of independent retrieval instances are 
applied and the final retrieval vector, 𝑌𝑌, is obtained as the average of the individual instances 
of retrievals. The algorithm is the same for all instances, but different sets of coefficients are 
used for each of them. In the following we describe the retrieval sequence, which is also 
illustrated in Figure 22: 
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i. Regression class determination (for a single particular instance) 
ii. Application of the regression coefficients (for a single particular instance) 

iii. Averaging and expansion of the retrieved parameters 
iv. Computation of the uncertainty estimates (quality indicators) 

 
i. Regression class identification: The regression class is determined by choosing the class 

where the centre is closest (in terms of Euclidian distance) to the scaled input vector. Only 
a subset of the predictors in the input vector 𝑋𝑋 are used for the computation of these 
distances and the scale factors to be multiplied with each predictor are configuration 
coefficients (a scale factor equal to zero indicates that the corresponding predictor is not 
used for the classification and should not be used for the computation of the distances to 
the class centres). 

𝑘𝑘𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (�(𝑐𝑐𝑘𝑘,𝑖𝑖 − 𝑤𝑤𝑖𝑖. 𝑥𝑥𝑖𝑖)2
𝑖𝑖

) eq( 6) 

Where 
𝑘𝑘𝑥𝑥 is the regression class to be used for the input vector x, 
𝑘𝑘 is the class identifier 
𝑖𝑖 is the input vector index 
𝑐𝑐𝑘𝑘,𝑖𝑖 is the ith element of the centre of class 𝑘𝑘 
𝑥𝑥𝑖𝑖 is the ith element of the input vector  
𝑤𝑤𝑖𝑖 is the input scaling factor of the ith element of the input vector 

 
The purpose of the input scaling factors is to avoid that the predictors with the highest 
variance dominate the classification, typically the standard deviation within the training 
set is used.  

 
ii. Regression: The class identifies which set of linear regression coefficients to be applied. 

It consists of mean input vector 𝑥̅𝑥, mean output vector 𝑦𝑦� and regression operator 𝑅𝑅. A 
separate set of linear regression coefficients is available for each of the classes.The 
application of these coefficients produces the instance output vector 𝑦𝑦 as  

𝑦𝑦 = 𝑦𝑦� + 𝑅𝑅(𝑋𝑋 − 𝑥̅𝑥) eq( 7) 
 

The output vector computed as described above represents the retrieved parameters of the 
16 individual pixels, where T, W, O and E are represented as PC scores. It is possible to 
have individual PCs for each of the 16 pixels or to have common PCs which cover the 
profiles (or emissivity spectra) of the 16 pixels. Both strategies work and have been 
demonstrated with IASI. The former is approach is retained here, so the retrieved vector 
writes. 

𝑦𝑦 = (𝑠𝑠1𝑇𝑇 , … , 𝑠𝑠16𝑇𝑇 , 𝑠𝑠1𝑊𝑊, … , 𝑠𝑠16𝑊𝑊 , 𝑠𝑠1𝑂𝑂 , … , 𝑠𝑠16𝑂𝑂 , 𝑠𝑠1𝐶𝐶𝐶𝐶2, … , 𝑠𝑠16𝐶𝐶𝐶𝐶2,𝑇𝑇𝑇𝑇1, … ,𝑇𝑇𝑇𝑇16, 
𝑠𝑠1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, … , 𝑠𝑠16𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑂𝑂𝑂𝑂𝑂𝑂1, … ,𝑂𝑂𝑂𝑂𝑂𝑂16, …, 

𝑄𝑄𝑄𝑄1𝑇𝑇 , … ,𝑄𝑄𝑄𝑄16𝑇𝑇 ,𝑄𝑄𝑄𝑄1𝑊𝑊, … ,𝑄𝑄𝑄𝑄16𝑊𝑊,𝑄𝑄𝑄𝑄1𝑂𝑂 , … ,𝑄𝑄𝑄𝑄16𝑂𝑂 ,𝑄𝑄𝑄𝑄1𝑇𝑇𝑇𝑇, … ,𝑄𝑄𝑄𝑄16𝑇𝑇𝑇𝑇,𝑄𝑄𝑄𝑄1𝑃𝑃𝑃𝑃, … ,𝑄𝑄𝑄𝑄16𝑃𝑃𝑃𝑃,𝑄𝑄𝑄𝑄1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, … ,𝑄𝑄𝑄𝑄16𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

eq( 
8) 

Where 𝑠𝑠𝑖𝑖𝑥𝑥 are the principal component scores (vectors) and 𝑄𝑄𝑄𝑄𝑖𝑖𝑥𝑥 are the quality indicators 
of parameter 𝑥𝑥 (profiles/vectors in the case of T, W, O3, CO2 and emissivity) in pixel 𝑖𝑖. 

 
iii. Output interpretation: The geophysical parameters retrieved with the different instances of 

the PWLR3 are averaged at this stage. For the parameters represented in principal 
components, they are averaged before being expanded, e.g. to vertical profiles or surface 
emissivity spectra. The expansion writes as follows: 
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𝑃𝑃𝑘𝑘 = [ 𝑃𝑃�𝑘𝑘 +  �𝐸𝐸𝑘𝑘,𝑖𝑖𝑠𝑠𝑖𝑖]
𝑛𝑛

𝑖𝑖=1

 eq( 9) 

where 𝑃𝑃𝑘𝑘 is the retrieved quantity (i.e. temperature, humidity, ozone or emissivity) at index 
(i.e. level or channel) 𝑘𝑘; 𝑃𝑃�𝑘𝑘 is its mean, 𝐸𝐸 is the eigenvectors for this parameter and 𝑠𝑠 the 
corresponding principal components scores 𝑖𝑖 = 1. .𝑛𝑛. Indicatively 40, 30, 20 and 10 
principal components are intended for Temperature, Humidity, Ozone and Emissivity. In 
the implementation of the operational code, these dimensions shall be configurable. 
 
The profiles retrieved by PWLR3, after expansion of the PC scores, are sampled at hybrid 
model levels known from ECMWF. This means that the surface pressure, which is also 
retrieved by PWLR3, is needed to associate pressure levels for each profile as described in 
[ECMWFgrid137]. When the pressure levels are known the profiles can be interpolated as 
described in 4.1 to the standard 101 level pressure grid used for the output product (and 
for the RTTOV coefficients). It is planned to represent water-vapour and ozone profiles in 
the logarithm of the mixing ratio within the PWLR3 regression. Then the profiles are 
converted into SI concentration units in the final products. 
 

iv. Quality indicators: We recall that the quality indicators are obtained by retrieval of the 
absolute error of the parameter in question. Like the other retrieved parameters, the quality 
indicators are retrieved by multiple retrieval instances, but unlike the other parameters we 
do not always use the average of the retrieved instances as the final retrieval of the quality 
indicators. Instead we use the standard deviation (over the instance retrievals) of the 
underlying parameter to which the quality indicator applies, whenever this standard 
deviation is greater than the usual average of the retrieved quality indicators. The standard 
deviation of the underlying parameter can be thought of as an estimate of the retrieval 
noise which is just a part of the total retrieval error estimated by the quality indicator and 
is therefore expected to be lower. However since there is uncertainty in the estimation of 
the absolute error, it can (and does) happen that the error estimate (of the total error) is 
lower than the estimate of the retrieval noise alone, which justifies the choice to use the 
maximum of the two as the final quality indicator. 

𝑄𝑄𝑄𝑄𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖�𝑦𝑦�𝑖𝑖,𝑗𝑗�,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖�𝜀𝜀𝑖̃𝑖,𝑗𝑗�� eq( 10) 
Where 𝑦𝑦� is the retrieved parameter and 𝜀𝜀̃ is the predicted uncertainty estimate computed 
after eq( 4). 𝑖𝑖 is the retrieval instance and 𝑗𝑗 is the geophysical parameter identifier (e.g. 
Temperature at a given pressure level, or skin surface temperature…). 

 
Figure 23 shows statistics of IASI PWLR3 temperature retrievals vs ERA-5 reanalysis on 
04/10/2016. The global dataset of all sky retrievals covering all pixels for the full day were 
partitioned in 4 quality classes of equal size (i.e. 25% of all pixels each) based on a unique 
temperature quality indicators corresponding to low tropospheric levels. The thresholds on the 
temperature quality indicators (error estimates) used for the partitioning were approximately 
1 K, 1.5 K and 2.2 K. We observe that the retrievals in the best quality class, depicted in green, 
are as expected the most precise (below 200 hPa) (as evaluated against ERA-5).  The statistics 
of the second best quality class is depicted in blue, the third best in red and the worst in black 
– the reliability of the temperature quality indicators is clearly demonstrated. Figure 24 shows 
the geographical distribution of the quality classes on the same day. The colours used are the 
same as in the previous figure – green, blue, red, black in order of decreasing quality. As 
infrared radiances are not sensitive to the atmosphere below clouds there is a high degree of 
correlation between the cloudiness and the quality indicators. These results are provided to 



EUM/RSP/TEN/17/935387 
v1F e-signed, 16 September 2021 

MTG-IRS L2 ATBD 
 

 

Page 41 of 103 

 

illustrate the significance of such retrieval estimates (here a single scalar quality indicator). In 
the operational implementation, the algorithm will generate uncertainty profiles for the 
atmospheric parameters, and an uncertainty vector for the emissivity. The units should be 
configurable. Good experience has been made so far of expressing uncertainties in K for 
temperature, dew point K for humidity and logarithmic mixing ratio for ozone. 
 

 

Figure 23: Stratification of Temperature statistics (dash: bias, solid: standard deviation) IASI-PWLR3 vs 
ECMWF analysis on 04/10/2016, partitioning in 4 quality classes of equal size based on quality indicator. 

 

Figure 24: Map of the quality classes defined above. 
 

3.6.2.6 Moving window strategy 
If the PWLR3 4x4 window was moved in a contiguous manner, as illustrated in Figure 25 left-
hand side, each dwell would be covered by 40 times 40 PWLR3 retrievals of 4 by 4 groups of 
pixels. With this configuration, pixels like the lower-right corner highlighted in purple in Figure 
25 would only benefit from neighbouring pixels from one side. To avoid this, the PWLR3 
window could be translated by one pixel at a time and retrievals be retained only for the centre 
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pixel, which would effectively result in 25600 retrievals per dwell. To mitigate the computation 
overhead and still ensure that retrievals in individual pixels will benefit from adjacent 
information in all directions, overlapping groups of 4 by 4 retrievals will be organised, yielding 
more than one PWLR3 retrieval for each pixel. For Day-1, we suggest to use overlapping 4 by 
4 groups always shifted by two pixels in each direction, as illustrated in Figure 25 right-hand 
side. In this way we end up with 79 times 79 basic PWLR3 retrievals per dwell and all pixels, 
except at the edges of the dwell, will be a combination of 4 different retrievals. Of these four 
retrievals there will always be one in which the current pixel is one of the four centre pixels in 
the 4 by 4 group (green-window 3 in Figure 25 right-hand side), there will be two where it is 
on the lateral edge but not corner (yellow- and blue-windows 2 and 4) of the 4 by 4 group and 
one where it is in the corner (red-window 1). The four individual retrievals for the current pixel 
as detailed in 3.6.2.5 will be averaged with weights 1/3, ¼, ¼ and 1/6 respectively to form the 
final retrieval for this pixel, to give more weight to the configuration where it sits in the middle 
of the window. 
 

 

Figure 25: PWLR3 moving window strategy illustrated on an 8 by 8 IRS-pixels subgrid of a dwell. Left: non-
overlapping groups. Right: overlapping groups 

3.6.3 Handling non-nominal situations 
The regression assumes that all predictors, with which it was trained, are available and of good 
quality. This can cause problems, when one or more of the 16 adjacent pixels used in a PWLR3 
retrieval is missing or of bad quality. To overcome this problem we can use the remaining good 
pixels to predict the failed or missing pixels with linear regression and compute the PC scores 
of the predictors with predicted values of the missing predictors, which can be achieved with a 
simple update of the eigenvectors.  
Let 𝐸𝐸 be the matrix of eigenvectors, partitioned into rows corresponding to missing predictors 
𝐸𝐸1 and rows corresponding to the remaining good predictors 𝐸𝐸0 

𝐸𝐸 = �𝐸𝐸0𝐸𝐸1
� eq( 11) 

 
and let 𝐶𝐶 

𝐶𝐶 = �𝐶𝐶00 𝐶𝐶01
𝐶𝐶10 𝐶𝐶11

� eq( 12) 

 
be the covariance matrix of all predictors compatibly partitioned. 
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To eliminate the use of the missing predictors, 𝐸𝐸1 must be set to zero in the updated 
eigenvectors and 𝐸𝐸0 must be replaced by  

𝐸𝐸0 +  𝐶𝐶00−1𝐶𝐶01𝐸𝐸1 eq( 13) 
 
Using this principle, a total of 15 different sets of eigenvectors are needed for the computation 
of the PC score for groups of 2 by 2 pixels to cover all possible combinations of zero to three 
bad or missing pixels out of the four. Likewise, for the second step combining four groups of 
2 by 2 into PC scores for a group of 4 by 4, we need 15 different set of eigenvectors to be able 
to handle all possible combinations of missing 2 by 2 groups (except all four subgroups missing 
of course). 

3.7 Cloudy scene characterisation 

3.7.1 Cloud retrieval 

3.7.1.1 Retrieval principle 
The purpose of this algorithm is to identify and characterise the presence of clouds in the field 
of view. A simple but useful model in satellite products represents the clouds as black bodies, 
characterised with an emitting top located at a certain altitude (pressure level) and an effective 
fractional coverage [Eyre and Menzel 1989]. The effective fractional coverage accounts for the 
geometrical extent as well as for the transparency of the cloud (e.g. a semi-transparent cloud 
with full extent over the pixel will have an effective coverage of 50%). Describing the radiative 
transfer within a cloud and aiming at more exhaustive description of it, e.g. including vertical 
profiles and microphysics parameters, is still a subject of active research in the thermal infrared. 
The computation-time of such models is also not compatible with near-real time operational 
applications yet. 
 
With this simple cloud modelling, the observed radiances at the top of the atmosphere 𝑅𝑅𝑣𝑣 at 
wavenumber 𝑣𝑣 writes as a linear combination of the clear-sky and cloudy radiance terms: 
 

𝑅𝑅𝑣𝑣 = (1 − 𝛼𝛼𝑣𝑣) ∗ 𝑅𝑅𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  +  𝛼𝛼𝑣𝑣 ∗ 𝑅𝑅𝑣𝑣
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝) eq( 14) 

 
where 𝑅𝑅𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the cloud-free radiance, 𝑅𝑅𝑣𝑣

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝) the overcast radiance with cloud-top at 
pressure 𝑝𝑝 and 𝛼𝛼𝑣𝑣 is the effective cloud coverage at wavenumber 𝑣𝑣. 
 
When using forward models like RTTOV [RTTOV 12] to simulate clear-sky top of the 
atmosphere radiances, the simulated overcast radiances with a hypothetical cloud top height at 
several different pressure levels are generally obtained as a by-product with no additional 
computational cost. This has been used to retrieve the cloud top height by fitting the measured 
radiances in selected channels by varying the cloud top height and the effective cloud fraction 
in the resulting simple cloudy forward model [Stubenrauch et al. 1999]. 
 
Other cloud top height retrieval schemes based on this simple cloud model, which have been 
proposed for hyperspectral infrared data, include CO2 slicing [Smith and Frey 1990] and MLEV 
[Huang et al. 2004]. Essentially these methods are similar to the radiance fitting method, but 
introduce a dependency of the channel weights on the cloud top pressure. As scattering is not 
taken into account in the simple (and fast) cloud model we only use channels between 700 and 
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950 cm-1 where the effect of scattering is small [Huang et al. 2004]. The latter two methods get 
very sensitive to input uncertainties when the cloud signal (difference between clear-sky and 
overcast radiances components) is small as it is used as scaling factor in the denominator of the 
cost function to be minimised. 
 
The algorithm described hereafter builds on the method in [Stubenrauch et al. 1999] and extends 
it to investigate potential 2-layer cloud configurations. Likewise, it assumes that the effective 
coverage is independent of the wavenumber. 

3.7.1.2 Computing the costs with clear and cloudy assumptions 
Let 

• 𝑟𝑟𝑘𝑘�  be the reconstructed radiances measured by MTG-IRS 
• 𝑟𝑟𝑘𝑘 the bias corrected radiance 𝑟𝑟𝑘𝑘 = 𝑟𝑟𝑘𝑘� − 𝑏𝑏𝑘𝑘, with 𝑏𝑏𝑘𝑘 the bias applied in channel 𝑘𝑘 
• 𝑦𝑦𝑘𝑘 be the simulated clear radiances (see section 3.7.1.4 for RTM and input vectors), 
• 𝑐𝑐𝑗𝑗𝑗𝑗 be the simulated overcast radiances for a hypothetical cloud at pressure level 𝑗𝑗  (see 

section 3.7.1.4 for RTM and input vectors) 
• 𝑆𝑆𝑦𝑦 the observation error covariance (𝑘𝑘 × 𝑘𝑘) matrix for the channels involved in the 

cloud retrieval. 
 

where 𝑘𝑘 is the channel index running over the channels used in the simple cloud parameter 
retrieval.  
 
The cost to be minimized generically writes: 

𝐶𝐶 = ( 𝑟𝑟 − 𝐹𝐹 )𝑇𝑇 𝑆𝑆𝑦𝑦−1 ( 𝑟𝑟 − 𝐹𝐹 ) eq( 15) 
 
Where 𝐹𝐹𝑘𝑘 is the forward-modelled radiance (with RTTOV) computed as follows under clear 
and cloudy assumptions. 
 
Clear-sky assumption: 
The cost 𝐶𝐶0, or weighted radiance misfit, with the clear-sky assumption writes from 𝐶𝐶 with: 

𝐹𝐹𝑘𝑘 = 𝑦𝑦𝑘𝑘 + 𝑑𝑑𝑇𝑇𝑇𝑇.𝐾𝐾𝑇𝑇𝑠𝑠,𝑘𝑘 eq( 16) 
 
To allow for some uncertainty in the surface skin temperature, the above simple clear sky cost 
is evaluated having fitted the surface skin temperature (𝑇𝑇𝑆𝑆), subject to a maximum absolute 
difference from the initial 𝑇𝑇𝑆𝑆 of 1 K. 
 
The surface temperature increment, 𝑑𝑑𝑇𝑇𝑆𝑆, can be computed as follows: 
 

𝑑𝑑𝑇𝑇𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,𝑚𝑚𝑚𝑚𝑚𝑚 �−1,
𝐾𝐾𝑇𝑇𝑠𝑠

𝑇𝑇 𝑆𝑆𝑦𝑦−1(𝑟𝑟 − 𝑦𝑦 )
𝐾𝐾𝑇𝑇𝑠𝑠

𝑇𝑇 𝑆𝑆𝑦𝑦−1𝐾𝐾𝑇𝑇𝑠𝑠
�� eq( 17) 

Where 𝐾𝐾𝑇𝑇𝑠𝑠,𝑘𝑘 is the derivative of the forward model with respect to surface temperature at 
channel 𝑘𝑘. 
 
One-cloud assumption: 
For a one-layer cloud at pressure level j with effective cloud fraction 𝛼𝛼, the cloudy cost 𝐶𝐶1 
derives from 𝐶𝐶 with 

( )  
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𝐹𝐹𝑘𝑘 = (1 − 𝛼𝛼)𝑦𝑦𝑘𝑘 + 𝛼𝛼𝑐𝑐𝑗𝑗𝑗𝑗 eq( 18) 
 
which must be minimized by varying j and 𝛼𝛼. The weights and correlations in the 𝑆𝑆𝑦𝑦 matrix 
are configurable and account for the overall uncertainties in fitting the observations with 
synthetic calculations at the different channels. Like in OEM, they include instrument noise 
and errors in the forward modelling and can be evaluated empirically. For any fixed cloud top 
pressure at level j, the minimization problem has the analytical solution 

𝛼𝛼𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,
�𝑐𝑐𝑗𝑗 − 𝑦𝑦 �

𝑇𝑇
 𝑆𝑆𝑦𝑦−1 (𝑟𝑟 − 𝑦𝑦 )

(𝑐𝑐𝑗𝑗 − 𝑦𝑦 )𝑇𝑇 𝑆𝑆𝑦𝑦−1(𝑐𝑐𝑗𝑗 − 𝑦𝑦 ) 
� eq( 19) 

 
Levels where 𝛼𝛼𝑗𝑗 is zero or negative are not considered further, since this does not correspond 
to possible cloud. A cloud fraction 𝛼𝛼𝑗𝑗 greater than 1 does not correspond to any possible cloud 
either, but for such levels we can consider a cloud fraction equal to 1 and compute the 
corresponding value of the cost function. The retrieved (one layer) cloud top pressure is the 
level for which the cost function yields the lowest value; only considering pressure levels below 
the tropopause, or below 100 hPa if it cannot be determined [Reichler et al. 2003]. Reichler’s 
approach follows the [WMO 1957] definition, where the tropopause is defined as ,‘‘the lowest 
level at which the lapse-rate decreases to 2°C/km, or less, provided that the average lapse-rate 
between this level, and all higher levels within 2 km does not exceed 2°C/km’’. 
 
Two-cloud assumption: 
Retrieving two-layer clouds is envisaged in future, with further studies to evaluate the potential. 
We provide below the theoretical mathematical formulation. 
This will not be implemented for Day-1. 
 
In situations where two different cloud top levels exist within the field of view, a better radiance 
fit might be obtained when using a two-layer cloud model: 

𝐶𝐶2(𝑖𝑖, 𝑗𝑗,𝛼𝛼1,𝛼𝛼2) = � 𝑟𝑟 − (1 − 𝛼𝛼1 − 𝛼𝛼2)𝑦𝑦 − 𝛼𝛼1𝑐𝑐𝑖𝑖 − 𝛼𝛼2𝑐𝑐𝑗𝑗�
𝑇𝑇
𝑆𝑆𝑦𝑦−1 � 𝑟𝑟

− (1 − 𝛼𝛼1 − 𝛼𝛼2)𝑦𝑦 − 𝛼𝛼1𝑐𝑐𝑖𝑖 − 𝛼𝛼2𝑐𝑐𝑗𝑗� 
eq( 20) 

 
Similarly to the one-layer cloud model, the optimal cloud fractions can be determined 
analytically for any fixed pair of cloud levels 𝑖𝑖 < 𝑗𝑗 

𝛼𝛼𝑖𝑖𝑖𝑖1 =  
�𝑟𝑟 − 𝑦𝑦 − 𝐴𝐴(𝑐𝑐𝑖𝑖 − 𝑦𝑦 )�

𝑇𝑇
 𝑆𝑆𝑦𝑦−1  �𝑐𝑐𝑗𝑗 − 𝑦𝑦 + 𝐵𝐵 �𝑐𝑐𝑗𝑗– 𝑦𝑦 ��

�𝑐𝑐𝑖𝑖 − 𝑦𝑦 + 𝐵𝐵�𝑐𝑐𝑗𝑗 − 𝑦𝑦 ��
𝑇𝑇
𝑆𝑆𝑦𝑦−1  �𝑐𝑐𝑖𝑖 − 𝑦𝑦 + 𝐵𝐵�𝑐𝑐𝑗𝑗 − 𝑦𝑦 ��

 eq( 21) 

 
𝛼𝛼𝑖𝑖𝑖𝑖2 =  𝐴𝐴 − 𝐵𝐵𝛼𝛼𝑖𝑖𝑖𝑖1  eq( 22) 

 
where 

𝐴𝐴 =  
(𝑐𝑐𝑖𝑖 − 𝑦𝑦 )𝑇𝑇 𝑆𝑆𝑦𝑦−1 (𝑟𝑟 − 𝑦𝑦 )
(𝑐𝑐𝑗𝑗 − 𝑦𝑦 )𝑇𝑇 𝑆𝑆𝑦𝑦−1 (𝑐𝑐𝑗𝑗 − 𝑦𝑦 )

 eq( 23) 

and 

𝐵𝐵 =  
� 𝑐𝑐𝑗𝑗 − 𝑦𝑦 �

𝑇𝑇
 𝑆𝑆𝑦𝑦−1 (𝑐𝑐𝑖𝑖 − 𝑦𝑦 )

�𝑐𝑐𝑗𝑗 − 𝑦𝑦 �
𝑇𝑇

 𝑆𝑆𝑦𝑦−1 �𝑐𝑐𝑗𝑗 − 𝑦𝑦 �
 eq( 24) 
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If a pair of cloud levels 𝑖𝑖 < 𝑗𝑗 exists such that the corresponding two-layer cloud model cost 
function value is lower than the best one-layer cost, then the two-cloud layers representation is 
retained, with cloud top pressures found by choosing the pair  𝑖𝑖 < 𝑗𝑗 which has the lowest cost. 
In this process, similarly to the one-layer clouds, if any of the individual cloud fractions 𝛼𝛼𝑖𝑖𝑖𝑖1  
and 𝛼𝛼𝑖𝑖𝑖𝑖2  or the sum of the two is greater than 1 we must of course evaluate the cost after 
normalising the cloud fractions so that their sum is 100%, the natural limit. Like in the 1-layer 
cloud formation, only pressure levels below the tropopause are considered, or below 100 hPa 
if it cannot be determined [Reichler et al. 2003]. 

3.7.1.3 Clear/Cloudy costs assessment and scene classification 
The best clear and cloudy costs as described in §3.7.1.2 are compared, using their ratio 

𝑞𝑞 =
𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶1,𝐶𝐶2)

𝐶𝐶0
 eq( 25) 

 
If the cloud-free cost is smaller than the best cloudy cost, then the scene is declared ‘cloud-
free’. If the best cloudy cost (1- or 2-layer) is lower than the clear-sky but the relative 
improvement is too small as assessed with a configurable threshold 𝜃𝜃0𝑐𝑐𝑐𝑐𝑐𝑐 

1 ≥ 𝑞𝑞 ≥ 𝜃𝜃0𝑐𝑐𝑐𝑐𝑐𝑐 eq( 26) 
then the detection of a cloud is considered ambiguous. Practically, the scene is classified as 
‘clear enough’ and the cloud parameters (fraction and top height) are unset. Physically, this 
would correspond to situations where the clear-sky assumption can be considered valid for 
simulating IRS observations, within the uncertainties of the forward modelling due to the RTM 
itself or to the input parameters. 
 
The resulting scene classification is recorded in a processing flag, the cloudiness flag, for 
information to the users and as input to subsequent processing functions. Such pixels classified 
as ‘cloud-free’ or ‘clear enough’ can be further processed with the optimal estimation described 
in the section 3.8, which assumes clear-sky. A cloud is flagged when the cloudy cost is 
significantly smaller in relative terms than the clear cost as assessed with 𝜃𝜃0𝑐𝑐𝑐𝑐𝑐𝑐. The associated 
cloud fraction(s) and cloud top height(s) are then reported in the final product. The value of 
𝜃𝜃0𝑐𝑐𝑐𝑐𝑐𝑐 for IRS is expected to be similar to that used for IASI: which is 0.5. We distinguish the 
intensity of the cloud contamination with a second threshold 𝜃𝜃1𝑐𝑐𝑐𝑐𝑐𝑐, set to 0.05 for IASI. 
 

Cloudiness summary 
Value Meaning Reason for flagging 

1 Clear-sky Cloud-free cost 𝐶𝐶0 is the lowest 

2 Clear enough, some small 
cloud contamination possible 

The relative improvement of the cost with 
clouds is small 

1 > 𝑞𝑞 ≥ 𝜃𝜃0𝑐𝑐𝑐𝑐𝑐𝑐 

3 Cloudy – moderate cloud 
signal 

Cloudy cost 𝐶𝐶1 or 𝐶𝐶2 is the lowest and 
𝜃𝜃0𝑐𝑐𝑐𝑐𝑐𝑐 > 𝑞𝑞 ≥ 𝜃𝜃1𝑐𝑐𝑐𝑐𝑐𝑐 

4 Cloudy – strong cloud signal 𝑞𝑞 < 𝜃𝜃1𝑐𝑐𝑐𝑐𝑐𝑐 

Table 4: Definition of the cloudiness summary 
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3.7.1.4 Input profiles to RTTOV simulations for cloud retrievals 
The profiles used in the invocation of RTTOV could be taken from either the PWLR3 retrieval 
or from the numerical forecasts; the choice should be configurable. In the context of IASI, the 
use of PWLR3 profiles has been successfully tested, but for IASI the PWLR3 nominally does 
also make use of collocated microwave (AMSU/MHS) observations, which improves the 
retrievals below clouds. Companion microwave measurements will not available in the context 
of IRS. Detecting clouds in the lower troposphere with forecast fields is particularly 
challenging over land due to uncertainties in the forecasts, assumptions made on the static state 
vector (e.g. emissivity) and uncertainties in the radiative transfer modelling [McNally and Watts 
2003]. OBS minus CALC statistics computed with PWLR3 in clear sky exhibits smaller standard 
deviations than when using forecast profiles in general, and particularly over continental 
surfaces [IASI L2 v6.4 val]. The PWLR3 profiles hence represent an interesting alternative input 
to distinguish small cloud contaminations from clear sky situations. With higher cloud amount, 
the errors of the infrared only PWLR3 retrievals gets higher, which is balanced by the fact that 
the contribution of the part of the profiles below the cloud top gets lower. The actual choice of 
the input profiles will be reflected in a processing flag in the final product. 

3.7.1.5 Channel selection and weighting for cloud retrievals 
The channel selection should be done such that the total information content in the spectral 
region we consider is preserved, following a similar method as presented for the channel 
selection of the optimal estimation (see §3.8.3.2). In theory, bias correction should be applied 
to the observations to take any systematic differences with respect to the model into account, 
but since this is hard to obtain for cloudy radiances it is not foreseen at this stage. In the current 
formulation, we have not included inter channel correlations in the cost functions, which are 
parameterized just by the channel weights, 𝑤𝑤𝑘𝑘. In most scenes, the cloud signal is sufficiently 
unambiguous, such that the retrieved cloud top heights are relatively insensitive to the weights. 
For the remaining scenes it might be beneficial to change to a full matrix formulation of the 
cloud cost functions and determine a weight matrix W based on a similar approach to how the 
observation error covariance matrix Sy is determined for the optimal estimation (see §3.8). 

3.7.2 Cloud phase 
The distinction between ice and liquid clouds can be done from their emission in the thermal 
infrared with simple brightness temperature difference tests [Strabala and Menzel 1994]. The test 
described below exploits a spectral region where the refractive indices of water and ice are 
distinct (between 11 and 12 µm) and another region where they are comparable (between 8 and 
11 µm). Corresponding channels can be selected in the infrared atmospheric windows where 
relatively less absorption is occurring (especially of water-vapour), so that brightness 
temperature differences essentially come from the different cloud characteristics [Chylek et al. 
2006]. 
 
The discrimination of ice from water clouds makes use of the brightness temperatures 𝑇𝑇𝑏𝑏 at 8, 
11 and 12 µm. 
If 

{𝑇𝑇𝑏𝑏(8µ𝑚𝑚) − 𝑇𝑇𝑏𝑏(11µ𝑚𝑚)} − {𝑇𝑇𝑏𝑏(11µ𝑚𝑚) − 𝑇𝑇𝑏𝑏(12µ𝑚𝑚)} > 𝜃𝜃1 eq( 27) 
then the cloud phase is ice, else if 

𝜃𝜃1 > {𝑇𝑇𝑏𝑏(8µ𝑚𝑚) − 𝑇𝑇𝑏𝑏(11µ𝑚𝑚)} − {𝑇𝑇𝑏𝑏(11µ𝑚𝑚) − 𝑇𝑇𝑏𝑏(12µ𝑚𝑚)} > 𝜃𝜃2 eq( 28) 
then the cloud is of mixed phase. The cloud is of water phase otherwise. 
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𝜃𝜃1 and 𝜃𝜃2 are configurable thresholds. As an indication, they are set to -0.9 and -1.15 in the 
IASI operational processor. 
 
A possible evolution would involve a statistical cloud classification/recognition algorithm, 
with supervised learning including for instance with collocated infrared measurements and 
cloud masks from high spatial resolution imagers. 

3.7.3 Dust detection 
Windblown dust and aerosols have low frequency spectral signature in the thermal infrared, 
with dust yielding a W-shape depression at first order in the 800-1200 cm-1 region [Sokolik 2002] 
[De Souza et al. 2006]. The intensity of the aerosol signal is related to the load but also to the type 
and size of particles. Other particles, like ice crystals, sulfate droplets or biomass burning 
aerosols yield distinct low frequency spectral signal, of different slope signs and strengths 
[Clarisse et al. 2013]. These signatures have been long exploited for the detection and 
characterisation of aerosols, including a number of brightness temperature difference tests from 
the legacy broadband imager and infrared sounding missions. 
 
The methodology described hereafter is a simple implementation of [Clarisse et al. 2013], taking 
advantage of the high spectral resolution of hyperspectral sounder. It aims at retrieving a 
pseudo-quantitative unitless indicator of the dust load in a given field of view. This dust 
indicator has been demonstrated with IASI and significant correlations with AOD retrieved 
from other sources were observed [Clarisse et al. 2013]. This indicator also correlates well with 
the loss of accuracy in SST retrievals when aerosol are not taken into account [Trent et al. 2016]. 
Preliminary studies have shown that the methodology should be successfully applicable to IRS 
resolution as well, because of the slow-varying spectral signature of dust and given that the 
800-1200 cm-1 region is well covered by MTG-IRS. 
 
The retrieved dust indicator with this approach is a weighted projection of the observed signal 
onto typical aerosol signature: 

𝑅𝑅 = 𝑘𝑘𝑇𝑇 𝑆𝑆−1( 𝑦𝑦 −  𝜇𝜇𝑐𝑐) eq( 29) 
 
where: 

• 𝑘𝑘 is the dust Jacobians 
• 𝑆𝑆 is the covariance matrix of dust-free spectra 
• 𝑦𝑦 is the observed spectrum  
• 𝜇𝜇𝑐𝑐 is the mean dust-free spectrum. 

𝑘𝑘, 𝑆𝑆 and 𝜇𝜇𝑐𝑐 can be defined empirically from a static training base of real observations, including 
dust-free and dust-contaminated pixels. The training base can be stratified with classification 
techniques such as k-mean. 𝜇𝜇𝑐𝑐 and 𝑆𝑆 are then the average spectrum and covariance within the 
dust-free class. As an alternative to explicit forward modelling, 𝑘𝑘 is approximated as the 
difference 𝜇𝜇𝑝𝑝 − 𝜇𝜇𝑐𝑐 where 𝜇𝜇𝑝𝑝 is the mean spectrum in the class of polluted/dust-loaded spectra. 
Different static configuration of the gain matrix 𝐺𝐺 = 𝑘𝑘𝑇𝑇 𝑆𝑆−1 are pre-computed off-line for the 
different land/sea and day/night combination separately. 
 
For clear spectra, this quantity has a mean of zero and a standard deviation of one. The presence 
of dust can be suspected when the indicator 𝑅𝑅 exceeds a configurable threshold, typically of 2 
to 3. 
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Further evolution could include the determination of different aerosol types and ice particles 
with classification algorithms. 

3.8 Second retrieval: Optimal Estimation Method 

3.8.1 Overview 
While the first retrieval is performed in both clear and cloudy situations, the second retrieval – 
the optimal estimation method – is only performed in pixels which are clear, or considered 
clear enough to apply cloud-free radiative transfer modelling. Optimal estimation is a 
variational method formulated as a minimization problem, seeking the state vector for which 
the application of a forward model simulation yields radiances which best match the 
observations and a regularization term which penalizes deviations of the state vector from the 
so called a priori state, as described in great detail in [Rodgers 2000]. As a baseline, RTTOV 12.1 
will be used as the forward model, but it is recommended to make the implementation in such 
a way that the forward model can be exchanged without impacts on the other parts of the 
retrieval code. 
 
As mentioned above, the cost function consists of two terms, which we will refer to as the 
background (synonym for a priori) and the observation term. Besides the choice of a priori 
and forward model, the optimal estimation method (OEM) is determined by the representation 
of the state-vector and the observations as well as the background error covariance matrix 
𝑆𝑆𝑥𝑥and the observation error covariance matrix 𝑆𝑆𝑦𝑦. 

𝐽𝐽 = 𝐽𝐽𝑥𝑥 + 𝐽𝐽𝑦𝑦 = (𝑥𝑥 − 𝑥𝑥𝑎𝑎)𝑇𝑇 𝑆𝑆𝑥𝑥−1 (𝑥𝑥 − 𝑥𝑥𝑎𝑎) + (𝐹𝐹(𝑥𝑥) − 𝑦𝑦)𝑇𝑇 𝑆𝑆𝑦𝑦−1 (𝐹𝐹(𝑥𝑥) − 𝑦𝑦) eq( 30) 
 

3.8.2 Background term of the cost function, 𝑱𝑱𝒙𝒙 

𝐽𝐽𝑥𝑥(𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥𝑎𝑎)𝑇𝑇 𝑆𝑆𝑥𝑥−1 (𝑥𝑥 − 𝑥𝑥𝑎𝑎) eq( 31) 
 
The state-vector x ∈ Rn represents the quantities to be retrieved by the optimal estimation 
method:  

• temperature profile (T) 
• water vapour profile, specific humidity (W) 
• ozone profile (O) 
• CO2 profile CO2 (optional) 
• surface skin temperature (𝑇𝑇𝑆𝑆) 

The profiles are represented as principal component (PC) scores (as further explained in the 
forward model section) of the deviation with respect to the a priori. The number of principal 
component scores used for each of the three types of profiles must be configurable – typical 
values might be 𝑛𝑛𝑇𝑇 = 28,𝑛𝑛𝑊𝑊 = 18, 𝑛𝑛𝑂𝑂 = 10,𝑛𝑛𝐶𝐶𝑂𝑂2 = 3. The total number of state-vector 
elements is 𝑛𝑛 = 𝑛𝑛𝑇𝑇 + 𝑛𝑛𝑊𝑊 + 𝑛𝑛𝑂𝑂 + 𝑛𝑛𝐶𝐶𝑂𝑂2 + 1.  
 
The PC scores used in the state-vector representation of the T, W, O and CO2 profiles are based 
on deviations from the a priori profile given at the 101 fixed pressure levels RTTOV grid. The 
units of the profiles on which the PC’s are based are T: K, W: ppmv, O: ppmv and C: ppmv 
using the logarithmic values in the case of W and O. It is possible to exclude one (or more) of 
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the four profiles from the active part of the state-vector by configuring the corresponding 
number of PC scores to be zero. Note: at the time of writing this version of the document, CO2 
is not yet an active (i.e. being retrieved) state vector parameter in the IASI operational 
processor. This corresponds to a configuration with 𝑛𝑛𝐶𝐶𝑂𝑂2 = 0, in which case the CO2 profile 
obtained in the first retrieval is carried over as input to the forward RTM of the OEM and is 
not allowed to change. 

3.8.2.1 Choice of a priori, 𝒙𝒙𝒂𝒂 
The a priori 𝑥𝑥𝑎𝑎 could either be taken from the first (PWLR3, section 3.6) retrieval or from 
collocated forecast fields (section 3.5.4). In terms of implementation, this choice is irrelevant 
and should be configurable for real-time operations. 
 
We have shown that the measurements can be better fitted when spectra are simulated with the 
PWLR3 profiles than with collocated forecast profiles 
[IASI L2 v6 val][IASI L2 v6.2 val][IASI L2 v6.4 val]. Using the PWLR3 profiles as first guess too is 
therefore expected to minimise the number of steps required to reach convergence in the OEM. 
It is understood that using the first retrieval as prior deviates from the theoretical definition of 
an a priori in the strict sense of Rodgers, i.e. being an independent information before the 
observation is made. However, being the most likely atmospheric state inferred from the 
observations based on an exhaustive climatology (that of ECMWF analyses), the first retrieval 
has proven to be a very valuable regularisation point in the minimisation process. Furthermore, 
this configuration would have the potential advantage that the retrievals will be independent of 
the corresponding NWP forecast data, which are already available to the forecasters. 
 
On the other hand, high frequency structures may be contained in the forecast profiles which 
cannot be observed by the MTG-IRS instrument because they lie in the so-called null space, 
i.e. they do not have any impact on the measured (nor simulated) radiances. These high 
frequency perturbations could have an interest for regional applications, e.g. to determine the 
boundary layer for instance or low level smaller inversions [Eyre et al. 2011]. They would be 
included in the profiles resulting from the optimal estimation if numerical predictions 
containing these signals were used as a priori. 
 
Diverging requirements have been expressed by Users with respect to the dependency to 
forecasts [IRS MAG 5], coming from different application –e.g. AMVs need be derived without 
forecasts prior if to be assimilated in models afterwards- but also within the Nowcasting 
community. There, it was expressed that independent observations -possibly at coarser vertical 
resolution- could suit the needs of forecasters. The release of the regional service EARS IASI 
L2 in a pilot phase in November 2017 [EARS IASI L2] allowed close interactions with end Users 
to study and discuss these matters. The potential of hyperspectral sounding products for 
regional applications is now being investigated in cooperation with NMHSs, the Convection 
Working Group and the European Severe Storm Lab, and through dedicated studies e.g. 
[Kocsis et al . 2017], bearing MTGIRS objectives and specificities in mind. 
 
The choice of the a priori is configurable and will be reflected in a processing flag of the final 
products. Possible fine adjustments to the algorithms can be made incrementally from this 
basis, including lessons from testing IASI and proxy-IRS L2 products with the Users and 
iterating on their requirements. The operational retrieval operator for IASI, which this IRS 
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ATBD inherits from, has been successfully tested with one or the other option [Crapeau et al. 
2017]. 
 
We note that, no matter what we choose as a priori, the actual vector, xa, is zero because we 
represent the state vector as PC scores of the deviations with respect to the chosen a priori 
profiles. 

3.8.2.2 A priori error covariance matrix, 𝑺𝑺𝒙𝒙 
The eigenvectors used for the state-vector representation are computed offline along with the 
corresponding a priori error covariance matrix, 𝑆𝑆𝑥𝑥. This computation is based on the covariance 
matrix of the differences between the a priori profiles and the collocated NWP analysis 
profiles. In the option using numerical forecasts as a priori, the background covariance matrix 
defined for Day-1 will be computed on a static climatology of forecasts vs analyses. A dynamic 
background matrix reflecting more accurately the statistics of the forecast error, for instance 
using the ensemble-based covariance at ECMWF, will be investigated as part of Day-2 
evolutions (OI-8). 
 
A separate covariance matrix is computed for each of the geophysical parameter to be retrieved. 
In the PC space in which the profiles are retrieved, the background error covariance matrix is 
diagonal and composed of four submatrices – one for each type of profile – on the diagonal 
and a last diagonal element corresponding to the first retrieval error variance of the surface skin 
temperature. 
 
As the PC scores used in the state-vector representation of the profiles are based on deviations 
from an a priori profile given at the 101 fixed pressure levels RTTOV grid, the a-priori xa in 
this representation is zero (except of course for the last element corresponding to 𝑇𝑇𝑆𝑆). 

3.8.3 Observation term of the cost function, 𝑱𝑱𝒚𝒚 

𝐽𝐽𝑦𝑦(𝑥𝑥) = (𝐹𝐹(𝑥𝑥) − 𝑦𝑦)𝑇𝑇 𝑆𝑆𝑦𝑦−1 (𝐹𝐹(𝑥𝑥) − 𝑦𝑦) eq( 32) 
where 

• 𝑥𝑥 is the state vector to be retrieved 
• 𝑦𝑦 is the observation vector, i.e. reconstructed IRS radiances in selected channels 
• 𝐹𝐹(𝑥𝑥) is the forward model function 
• 𝑆𝑆𝑦𝑦  is the observation error covariance matrix, including instrument and forward 

modelling errors 

3.8.3.1 Forward model, F 
The underlying forward model is RTTOV 12.1 using the rttov8pred101L coefficients (i.e. the 
coefficients for 101 levels pressure grid, with variable O3 and CO2, but fixed CH4, CO or N2O) 
[RTTOV 12]. The state-vector in the optimal estimation is represented as principal component 
scores of the deviation with respect to the a priori state vector. This has the advantage of 
reducing the number of operations related to the background term in the optimal estimation 
and of increasing their numerical stability (𝑆𝑆𝑥𝑥 matrix is diagonal). This representation of the 
state-vector in the optimal estimation is different from what is used directly by RTTOV. 
Therefore, the forward model 𝐹𝐹:ℝ𝑛𝑛 → ℝ𝑚𝑚 is composed of two functions:  

• the state-vector representation function 𝑋𝑋:ℝ𝑛𝑛 → ℝ𝑁𝑁 and  
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• the RTTOV 12.1 implemented function 𝑓𝑓:ℝ𝑁𝑁 → ℝ𝑚𝑚. 
Here, N = 304, corresponding to the atmospheric temperature in K, the atmospheric water 
vapour concentration in kg/kg, the atmospheric ozone concentration in kg/kg and the 
atmospheric carbon dioxide concentration in kg/kg, all at 101 fixed pressure levels each as well 
as the surface skin temperature. The state-vector representation function is computed 
individually for each component 

�𝑥𝑥𝑇𝑇 𝑥𝑥𝑊𝑊 𝑥𝑥𝑂𝑂 𝑥𝑥𝐶𝐶  𝑥𝑥𝑇𝑇𝑠𝑠�
𝑋𝑋
→ �𝑋𝑋𝑇𝑇 𝑋𝑋𝑊𝑊 𝑋𝑋𝑂𝑂 𝑋𝑋𝐶𝐶  𝑋𝑋𝑇𝑇𝑠𝑠� eq( 33) 

For temperature, we have 
𝑋𝑋𝑇𝑇 = 𝑋𝑋𝑇𝑇𝑎𝑎 + 𝐸𝐸𝑇𝑇𝑥𝑥𝑇𝑇 eq( 34) 

where 𝐸𝐸𝑇𝑇 ∈ ℝ𝑁𝑁𝑇𝑇×𝑛𝑛𝑇𝑇 are the nT leading principal components and XTa 𝑋𝑋𝑇𝑇𝑎𝑎 is the a priori 
temperature profile in K at 101 levels which is provided for each individual field of view.  
 
This is similar for water-vapour (W), ozone (O) and carbon dioxide I, except that the principal 
components for W and O are based on ln(kg/kg) such that we get  
 

𝑋𝑋𝑊𝑊 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑙𝑙𝑙𝑙(𝑋𝑋𝑊𝑊𝑎𝑎 ) + 𝐸𝐸𝑊𝑊𝑥𝑥𝑊𝑊) eq( 35) 
 

𝑋𝑋𝑂𝑂 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑙𝑙𝑙𝑙(𝑋𝑋𝑂𝑂𝑎𝑎) + 𝐸𝐸𝑂𝑂𝑥𝑥𝑂𝑂) eq( 36) 
 

𝑋𝑋𝐶𝐶 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋𝐶𝐶𝑎𝑎 + 𝐸𝐸𝐶𝐶𝑥𝑥𝐶𝐶) eq( 37) 
 
where 𝑋𝑋𝑊𝑊𝑎𝑎  , 𝑋𝑋𝑂𝑂𝑎𝑎, 𝑋𝑋𝐶𝐶𝑎𝑎are the a priori water vapour, ozone and carbon dioxide concentrations in 
kg/kg at the 101 fixed pressure levels. 
 
Finally 𝑋𝑋𝑇𝑇𝑠𝑠 = 𝑥𝑥𝑇𝑇𝑠𝑠. 
 
Having defined the state-vector representation function X, we can now write the forward model 
function, F, used in the optimal estimation as 

𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑋𝑋(𝑥𝑥)) eq( 38) 
and its Jacobian as 

𝐹𝐹′(𝑥𝑥) = 𝑓𝑓′(𝑋𝑋(𝑥𝑥)) ∙ 𝑋𝑋′(𝑥𝑥) eq( 39) 
 
The radiances simulated by RTTOV depends on more parameters than are included as active 
parameters of the state-vector 

• the surface pressure, which is obtained from the PWLR3 retrieval 
• the surface emissivity, which is obtained from the PWLR3 retrieval 
• the satellite zenith angle, which is obtained from the level 1 data 
• the surface elevation, which is looked up from the geolocation of the pixel (§3.5.3) 

3.8.3.2 Observations, y 
IRS spectra can be represented by a small number of PC scores with only a minor loss of 
information. The same is true about the representation by a small number of reconstructed 
radiances. In fact it is easy to go from one representation to the other provided that the channel 
subset of reconstructed radiances is chosen such that the corresponding sub-matrix of the 
eigenvector matrix is non-singular. That this is always possible follows directly from the 
“Fundamental theorem of linear algebra”.  In order to make the transformation from a subset 
of reconstructed radiances to PC scores numerically stable and be able to preserve all the 
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information available in the PC scores, it is important that the channel subset is chosen such 
that the condition number of this sub-matrix is kept low. In practice the condition number is 
heuristically minimized by choosing linearly independent rows of the eigenvector matrix with 
either Gaussian elimination or a Gram-Schmidt process [Strang], in which the pivot element in 
each step is chosen to be numerically large. This channel selection is performed separately for 
each of the two bands. 
 
It is well known that the full information content in a PC score representation of a radiance 
spectrum can be represented as a subset of reconstructed radiances of the same size as the 
number of PC scores [Collard and Matricardi 2005]. Furthermore the measurement term of the 
optimal estimation cost-function is exactly the same whether the measurement is represented 
as a subset of reconstructed radiances or as PC scores – hence the retrievals performed with the 
two different representations are identical [Hultberg and August 2014]. The exact equivalence of 
the two versions of the measurement cost function term holds when the forward models used 
in the two cases are consistent, in the sense that the subset of radiances produced by the first 
model agrees with the radiances which would be obtained by expanding the PC scores obtained 
by the second model. Furthermore the subset of radiances must be chosen such that the 
observation error covariance matrix remains non-singular when transformed to the 
reconstructed radiance space, which, as we will see, is easily achieved. 
 
Let there be given a truncated set of eigenvectors, 𝐸𝐸 ∈ ℝ𝑚𝑚×𝑝𝑝 (𝑝𝑝 < 𝑚𝑚), based on normalised 
radiances  

𝑦𝑦 = 𝑁𝑁−1(𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑦𝑦0) ∈ ℝ𝑚𝑚 eq( 40) 
 
where  

• 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼 is the original measurement, 
• 𝑁𝑁 ∈ ℝ𝑚𝑚×𝑚𝑚 is the noise normalisation matrix and  
• 𝑦𝑦0 is a reference spectrum – typically the mean of the radiance vectors found in the 

training set. 
 
We proceed by writing the expressions for the measurement term of the cost functions in the 
two cases (the a priori term is not affected by the radiance representation). For this we need to 
introduce two forward models, 𝑓𝑓𝑝𝑝𝑝𝑝:𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑝𝑝, taking a state vector into a PC score 
representation of the corresponding simulated spectrum and, 𝑓𝑓𝑟𝑟𝑟𝑟:𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑝𝑝, taking a state vector 
into a subvector of the corresponding simulated spectrum, such that 𝑓𝑓𝑟𝑟𝑟𝑟(𝑥𝑥) is equal to the 
corresponding subvector of 𝐸𝐸𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥). The cost function for the PC score representation can now 
be written as: 

�𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥)�
𝑇𝑇
�𝐸𝐸𝑇𝑇𝑆𝑆𝑦𝑦𝐸𝐸�

−1
�𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥)� eq( 41) 

 
where 𝑆𝑆𝑦𝑦 is the observation error covariance matrix in normalised radiance space. 𝑆𝑆𝑦𝑦 might be 
an identity matrix, in case the noise normalisation matrix is equal to the matrix square root of 
the full observation error covariance matrix (i.e. if 𝑁𝑁 = 𝑆𝑆𝑦𝑦

1/2), but most likely it is not (e.g. the 
normalisation account for instrument noise covariance only, or just the diagonal of it). 
 
To express the cost function for the representation as a subset of reconstructed radiances, we 
let 𝐸𝐸𝑠𝑠 ∈ 𝑅𝑅𝑝𝑝×𝑝𝑝 denote the sub matrix of 𝐸𝐸 obtained by selecting the rows of 𝐸𝐸 corresponding to 
the selected channels and get 

(𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑟𝑟𝑟𝑟(𝑥𝑥))𝑇𝑇�𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑆𝑆𝑦𝑦𝐸𝐸𝐸𝐸𝑠𝑠𝑇𝑇�
−1(𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑟𝑟𝑟𝑟(𝑥𝑥)) eq( 42) 
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which, using the consistency of the two forward models (𝑓𝑓𝑟𝑟𝑟𝑟(𝑥𝑥) = 𝐸𝐸𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥), we can 
immediately rewrite as  

�𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑦𝑦 − 𝐸𝐸𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) �
𝑇𝑇
�𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑆𝑆𝑦𝑦𝐸𝐸𝐸𝐸𝑠𝑠𝑇𝑇�

−1
�𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑦𝑦 − 𝐸𝐸𝑠𝑠𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) �

= �𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) �
𝑇𝑇
𝐸𝐸𝑠𝑠𝑇𝑇�𝐸𝐸𝑠𝑠𝐸𝐸𝑇𝑇𝑆𝑆𝑦𝑦𝐸𝐸𝐸𝐸𝑠𝑠𝑇𝑇�

−1
𝐸𝐸𝑠𝑠�𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) � 

eq( 43) 

 
If 𝐸𝐸𝑠𝑠 is non singular, the matrix inverse can be written as a product of matrix inverses 

�𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) �
𝑇𝑇
𝐸𝐸𝑠𝑠𝑇𝑇𝐸𝐸𝑠𝑠−𝑇𝑇�𝐸𝐸𝑇𝑇𝑆𝑆𝑦𝑦𝐸𝐸�

−1
𝐸𝐸𝑠𝑠−1𝐸𝐸𝑠𝑠�𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) �

= �𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) �
𝑇𝑇
�𝐸𝐸𝑇𝑇𝑆𝑆𝑦𝑦𝐸𝐸�

−1
�𝐸𝐸𝑇𝑇𝑦𝑦 − 𝑓𝑓𝑝𝑝𝑝𝑝(𝑥𝑥) � 

eq( 44) 

 
which is identical to the PC score cost function. 
 
The 𝑝𝑝 columns of 𝐸𝐸 are linearly independent (in fact they are even orthogonal) and the 
fundamental theorem of linear algebra tells us that a subset of 𝑝𝑝 linearly independent rows 
exist. Furthermore it is easy to identify a linearly independent subset of 𝑝𝑝 rows by Gaussian 
elimination or Gram-Schmidt orthogonalization. 
 
With a channel selection obtained in this way, the cost function with both representations of 
the measurements (as PC scores or as a subset of reconstructed radiances) are identical, 
provided that the two forward models are the same, in the sense that the forward modelled PC 
scores expanded to radiances via pre-multiplication with the eigenvectors agree with the 
forward modelled radiances [Hultberg and August 2014]. We can therefore exploit the full 
information content in a computationally efficient way by representing the observations as a 
small subset of reconstructed radiances. The reconstructed radiances, y, are obtained from the 
IRS PC scores provided in the L1 files using the operational eigenvectors based on 
measurements. To suppress instrument artefacts this is followed by a projection onto the 
forward model subspace [Hultberg and August 2014]. For computational efficiency the matrix 
corresponding to the reconstruction followed by the projection is precomputed by matrix 
multiplication, such that only a single matrix vector multiplication is needed to obtain the 
double reconstructed radiances from the L1 PC scores. 
 
Furthermore, as discussed in Appendix D, the observations must be bias corrected to get rid of 
systematic differences with respect to the forward model simulated radiances. The correction 
to apply is based on a large set of differences between observations and forward model spectra 
computed from collocated ECWMF analysis profiles. A simple linear model parameterized by 
the secant of the satellite zenith angle has been demonstrated to work well for IASI. But more 
advanced piecewise linear models using the PC scores as additional predictors would be better 
suited to take into account local biases, related to the abundances of trace gases which are 
assumed fixed in the retrieval, and should be explored as a possible improvement. At first, the 
bias corrected radiances to be ingested in the OEM, 𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂, can be derived from the 
reconstructed radiances, 𝑦𝑦𝑅𝑅𝑅𝑅, as follows: 
 

𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑦𝑦𝑅𝑅𝑅𝑅 + �𝑏𝑏0 + 𝑏𝑏1(𝜁𝜁 − 𝜁𝜁)̅ +  𝑏𝑏2(𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑂𝑂𝑂𝑂𝑂𝑂�������) + 𝑏𝑏3(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑎𝑎���)� eq( 45) 
 
where 𝑏𝑏0, 𝑏𝑏1, 𝜁𝜁,̅ 𝑂𝑂𝑂𝑂𝑂𝑂�������, 𝑇𝑇𝑎𝑎��� are static configuration coefficients of the linear parameterisation by 
the secant of the satellite zenith angle 𝜁𝜁, the predicted cloud signal 𝑂𝑂𝑂𝑂𝑂𝑂 (§3.6.2.3) and the 
surface air temperature 𝑇𝑇𝑎𝑎. 
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3.8.3.3 Observation error covariance matrix, 𝑺𝑺𝒚𝒚 

The observation error covariance matrix must account for all types of errors affecting both the 
measurement, 𝑦𝑦, and the simulated radiances 𝐹𝐹(𝑥𝑥). This includes both the part of the 
instrument noise which is left in the reconstructed radiances and the forward model errors, for 
example caused by errors in the parameters which are not part of the active state-vector. As we 
expect higher uncertainty of the surface emissivity over land than over water, and this 
uncertainty affects the observation error, we use two different matrices for 𝑆𝑆𝑦𝑦 over sea and over 
land. 
 
Each of these two instances of 𝑆𝑆𝑦𝑦 is a full matrix (i.e. with the error correlations included) 
computed offline as the covariance matrix of a large sample of differences between the 
measurement 𝑦𝑦 (in the optimal estimation representation as defined above) and the 
corresponding forward model simulations 𝐹𝐹(𝑋𝑋𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) using the first-guess as input. This 
would seem to overestimate the observation errors, since it includes the effect of any errors in 
the first-guess, be it numerical forecasts or PWLR retrievals (§3.6). However in the latter 
configuration, since the major part of the PWLR retrieval error is smoothing error, which does 
not affect the radiances, the net result is just a minor overestimation. When using this “Obs 
minus Calc” approach to estimate the observation error covariance matrix, it is essential not to 
base the “Calc” on profiles which have been determined by a variational method like optimal 
estimation, since this would result in an underestimation of the observation errors, see 
[Rodgers 2000] page 190. This underestimation would be fatal, because it would occur along the 
directions in the range of the Jacobians, which are the directions which actually matters for the 
minimization. In the configuration where OEM is ran with numerical forecasts, other methods 
to determine this observation error covariance matrix, such as the Desroziers techniques, could 
be investigated closely together with the radiance assimilation community as part of Day-2 
developments. 

3.8.4 Minimization of the cost function, 𝑱𝑱 = 𝑱𝑱𝒙𝒙 + 𝑱𝑱𝒚𝒚 

The total cost function to be minimised writes: 
𝐽𝐽 = 𝐽𝐽𝑥𝑥 + 𝐽𝐽𝑦𝑦 = (𝑥𝑥 − 𝑥𝑥𝑎𝑎)𝑇𝑇 𝑆𝑆𝑥𝑥−1 (𝑥𝑥 − 𝑥𝑥𝑎𝑎) + (𝐹𝐹(𝑥𝑥) − 𝑦𝑦)𝑇𝑇 𝑆𝑆𝑦𝑦−1 (𝐹𝐹(𝑥𝑥) − 𝑦𝑦) eq( 46) 

 
It is a scalar valued continuous function of 𝑥𝑥 and we can apply Netwon’s method to find a zero 
of its derivative (the gradient). This leads to an iterative process  

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝐽𝐽′′(𝑥𝑥𝑛𝑛)−1𝐽𝐽′(𝑥𝑥𝑛𝑛) eq( 47) 
 
where 𝐽𝐽′(𝑥𝑥𝑛𝑛) is the first derivative of the cost function at iteration 𝑛𝑛 and 𝐽𝐽′′(𝑥𝑥) is the Hessian: 

𝐽𝐽′′(𝑥𝑥) = 𝐹𝐹′(𝑥𝑥)𝑆𝑆𝑦𝑦−1𝐹𝐹′(𝑥𝑥) + 𝑆𝑆𝑥𝑥−1 eq( 48) 
 
The iterations are stopped when the Euclidean norm of the gradient, ‖𝐽𝐽′(𝑥𝑥𝑛𝑛)‖, is smaller than 
a small threshold value, the maximum number of iterations (5) has been reached or if the 
relative size of the Newton step is below 10-8. 

‖𝐽𝐽′′(𝑥𝑥𝑛𝑛)−1𝐽𝐽′(𝑥𝑥𝑛𝑛)‖/‖𝑥𝑥𝑛𝑛‖ < 10−8 eq( 49) 
 
In the first case we say that the process has converged. After exiting the iterations, no matter 
whether convergence was reached or not, the background and the observation terms of the cost 
function are compared to two threshold values. The current solution 𝑥𝑥𝑛𝑛 is accepted if both cost 
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function terms are below its corresponding acceptance threshold, otherwise, if the optimal 
estimation solution is not accepted, only the first retrieval is provided. 
 
Note that very often the Levenberg-Marquardt algorithm is used for the minimization of the 
cost function in implementations of optimal estimation retrievals. This leads to slower 
convergence (more iterations needed) than with the pure Newton method, but can converge in 
cases where Newton’s method would fail because the initial state-vector guess, 𝑥𝑥0, is not within 
the region of convergence of the method. However if we use the PWLR3 retrieval for the initial 
state-vector guess (no matter whether PWLR3 or forecast is used as a priori) we are already 
very close to the optimal estimation solution and normally well within the convergence region, 
such that the Levenberg-Marquardt algorithm is not needed. To be on the safe side we propose 
to implement a simple variant of the damped Newton method, which has been proven 
operationally in the IASI L2 processing. If the usual Newton step does not provide a solution 
with a lower value of the cost function we take a half Newton step instead 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 −
1
2
𝐽𝐽′′(𝑥𝑥𝑛𝑛)−1𝐽𝐽′(𝑥𝑥𝑛𝑛) eq( 50) 

or a quarter step, an eighth of a step, etc. until 𝐽𝐽(𝑥𝑥𝑛𝑛+1) is lower than 𝐽𝐽(𝑥𝑥𝑛𝑛). 

3.8.5 Retrieval error covariance matrix 
The retrieval error covariance matrix of the optimal estimation is given by the expression 

(𝐹𝐹′(𝑥𝑥)𝑆𝑆𝑦𝑦−1𝐹𝐹′(𝑥𝑥) + 𝑆𝑆𝑥𝑥−1)−1 eq( 51) 
 
evaluated at the optimal solution. We see that this is the inverse of the Hessian, which is already 
computed in the course of the Newton iterations. This retrieval error covariance matrix applies 
to the compact representation of the state vector in the optimal estimation using PC scores. 
Using the eigenvectors of the state vector components, it can be expanded to apply for the fixed 
pressure level grid. However, this expansion is better performed on the user side to save 
bandwidth, since the data volume is much smaller when expressing the retrieval error 
covariance matrix in PC space. We can save additional space by ignoring the error correlations 
between the state vector component, such that instead of providing an 𝑛𝑛 by 𝑛𝑛  matrix (𝑛𝑛 = 𝑛𝑛𝑇𝑇 +
𝑛𝑛𝑊𝑊 + 𝑛𝑛𝑂𝑂 + 𝑛𝑛𝐶𝐶 + 1 ) we provide only the diagonal blocks – of dimensions 𝑛𝑛𝑇𝑇 by 𝑛𝑛𝑇𝑇, 𝑛𝑛𝑊𝑊 by 
𝑛𝑛𝑊𝑊, 𝑛𝑛𝑂𝑂 by 𝑛𝑛𝑂𝑂 and , 𝑛𝑛𝐶𝐶  by 𝑛𝑛𝐶𝐶 . And finally we only need to provide the upper diagonal part of 
these blocks as they are symmetric. 
 
 
To illustrate how the full symmetric matrix is built from the upper triangular part stored in row major order 
we consider a case where the number of PC scores for some parameter equals 3 and so the upper diagonal 
entries stored in the retrieved product are as follows: 𝜈𝜈1, 𝜈𝜈2, 𝜈𝜈3, 𝜈𝜈4, 𝜈𝜈5, 𝜈𝜈6. 
 
In this case the retrieval error covariance matrix in PC space, 𝑆𝑆𝑃𝑃𝑃𝑃 would be given by this formula: 

𝑆𝑆𝑃𝑃𝑃𝑃 = �
𝜈𝜈1 𝜈𝜈2 𝜈𝜈3
𝜈𝜈2 𝜈𝜈4 𝜈𝜈5
𝜈𝜈3 𝜈𝜈5 𝜈𝜈6

� eq( 52) 

For this parameter we obtain the 𝑁𝑁 × 𝑁𝑁 retrieval error covariance matrix 𝑆𝑆𝑆𝑆𝑆𝑆 in pressure level space from 
the 𝑛𝑛 × 𝑛𝑛 retrieval error covariance matrix in PC space by pre- and post- multiplication with the 𝑁𝑁 × 𝑛𝑛 
matrix of eigenvectors, 𝐸𝐸, as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐸𝐸𝑆𝑆𝑃𝑃𝑃𝑃𝐸𝐸𝑇𝑇 eq( 53) 
The unit of the retrieval error covariance matrix in pressure level spaces is K2 for temperature and log(ppmv)2 
for water vapour and ozone. 
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The averaging kernels in atmospheric PC space, 𝐴𝐴𝑃𝑃𝑃𝑃, can be computed with this formula: 
𝐴𝐴𝑃𝑃𝑃𝑃 = 𝐼𝐼 − 𝑆𝑆𝑃𝑃𝑃𝑃𝑆𝑆𝑥𝑥−1 eq( 54) 

where 𝑆𝑆𝑥𝑥 is the static background error covariance matrix 𝑆𝑆𝑥𝑥 used in the cost function. 
 
From this, the averaging kernels in the pressure grid space can be derived as follows: 

𝐴𝐴𝑆𝑆𝑆𝑆 = 𝐸𝐸𝐴𝐴𝑃𝑃𝑃𝑃𝐸𝐸𝑇𝑇 eq( 55) 
 
We note that this retrieval error estimate ignores the fact that the a priori could be depending 
on the measurement if the first retrieval is used instead of ECMWF forecasts. This can be taken 
into account by combining the averaging kernels of the first and second retrievals as described 
in detail in [Hultberg and August 2016]. However, since this improved error estimate is not yet 
operational with IASI, we do not specify it for Day-1 of MTG-IRS.  

3.9 Quality control 
All parameters resulting from first (PWLR3, section 3.6) and second (OEM, section 3.8) 
retrievals shall be verified against configurable validity bounds. In addition, the temperature 
and humidity profiles from these two methods which would exceed the super-saturation and 
super-adiabatic conditions shall be modified and flagged accordingly to reflect that unphysical 
conditions were met, as described in the sections 4.10 and 4.12. 

3.10 Post-processing 

3.10.1 Geometric corrections 

3.10.1.1 Reconstruction of vertical profiles 
While the profiles delivered to the Users are intended at the vertical of the target point (green 
profile in the Figure 27), the geophysical parameters are effectively retrieved along the line of 
sight (in violet in Figure 27) with the approach described in the present version of this 
document. This may require staging retrievals to combine information from adjacent dwells 
and is an extra layer of complexity in the processing. Alternative algorithms aiming direct 
retrieval of vertical profiles (with statistical methods or 3D-variational methods) will be 
investigated in future to circumvent this. 
 
The parallax effect indeed becomes important as the observation target departs from the sub-
satellite point. For instance, observations in London, in the Netherlands or centre of Germany 
correspond to satellite zenith angle of about 60°, in which case the parallax effect for levels at 
5 and 10 km correspond to approximately 1 and 2 pixels shift, respectively. Similarly, the 
ozone information retrieved at 30 km would be reported about 6 pixels away from its true 
location if the parallax effect is not taken into account. 
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Figure 26: Schematic view of IRS satellite zenith angle wrt local zenith (yellow). 
 

 
 

 

Figure 27: Observed slanted (purple) and vertical profile provided to the End-Users (green). 
 
The purpose of this post-processing step is to reconstruct the information at the vertical of the 
target point (i.e. the pixel centre) from the slanted retrievals which are intercepting it. The 
Figure 28 illustrates the principle of the reconstruction, which may also require combining 
information from adjacent dwells. 
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Figure 28: Reconstructing profiles at the vertical of a pixel with slant retrievals. 
 
The same pressure grid is used for the end product (vertical profile, green in Figure 28) and the 
intermediate output slanted retrievals from PWLR3 or OEM (blue and red in Figure 28). While 
the collocation slanted-to-vertical profiles can be systematically computed online after §4.16, 
it may represent unnecessary large computation overhead. 
 
The correspondence slanted-to-vertical within any given dwell can be assumed to follow a 
deterministic pattern, which is function of the viewing geometry for that dwell. The assignment 
of atmospheric profiles parameters at given vertical pressure levels is hence alternatively 
approximated via pre-computed look-up tables (LUT), by off-line evaluation of the profiles 
levels’ geolocation (and hence nearest IRS grid point) as explained in §4.16. Slanted retrievals 
from adjacent dwells may also be required to compose vertical profiles. In such cases, a fixed 
nominal relative position is assumed at first order and slanted-to-vertical correspondence table 
across dwells can be pre-computed off-line.  
 
For each pixel of a given dwell and for each pressure level of the end-product vertical profiles, 
an auxiliary dataset contains the dwell identifier and pixel indices of the associated slanted 
retrieval. In case of recombination from adjacent dwells, the actual positions of anchor points 
(e.g. dwell corners…) is evaluated relatively to the nominal collocation and offsets in pixels in 
the target detector matrix is computed. If significant, the offsets are applied to the pre-computed 
look-up tables to perform to construction of vertical profiles across dwells. 
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Overall, different slanted-to-vertical LUTs may need to be pre-configured depending on the 
satellite position (essentially elevation) around its nominal orbital position. 
 

3.10.1.2 Geolocation of the clouds 
The Figure 29 illustrates the effect of the viewing geometry on the perceived and actual location 
of a cloud retrieved on a slant path. The Earth coordinates of the sub-point of a cloud retrieved 
along a slant path can be computed following the methodology explained in section 4.16, using 
the pressure to height conversion in §4.3. The cloud can then be assigned to the nearest IRS 
pixel of the same dwell and/or in a neighbouring dwell as applicable. 
 

 

Figure 29: Apparent and actual geolocation of a cloud retrieved on a slant path (IRS pixels on ground 
illustrated with the black boxes) 
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3.10.1.2.1 Computation of columnar amounts 
The total columns of water-vapour and ozone are computed as described in section 4.2, using 
the profiles retrieved with the statistical (§3.6) and optimal estimation (§3.8) methods, after 
application of the geometrical corrections (§3.10.1.1) where necessary. These total columns 
are intended in the final products together with the atmospheric profiles, as presented in 
Appendix C. 
 
2D fields of partial columnar amounts of water-vapour may also be pre-computed from the 
profiles to serve users interest. The principle was addressed in the ESSL Testbed 2018 
(www.essl.org) where NWC SAF proposed low and mid-tropospheric moisture integrated 
content as new products derived from SEVIRI. Similarly, layer amounts can be produced from 
IRS L2 profiles and are defined in the following section. 

3.10.1.2.2 Computation of stability indices 
Convection can yield severe weather events (thunder, wind gust, tornadoes, hail, flash-flood…) 
which can have dramatic societal consequences. Identifying areas with potential atmospheric 
instabilities is hence critical to issue accurate warnings, as early as possible, to prepare 
population, economic actors and civil protection. As identified in [Eyre et al. 2011], 2D fields of 
stability indices are important outputs expected from IRS sounding for forecasting purposes. 
 
Following the review of the IRS L2 product content proposal, it was confirmed in the 5th MAG 
meeting that stability indices are to be generated centrally by the IRS L2 processor. The 
possibility to retrieve the stability indices directly from the observations with a statistical 
method, here the PWLR3 (section 3.6), and their potential will be investigated. It is meanwhile 
proposed to derive these indicators in the classical way from the retrieved profiles, after their 
geometrical post-processing (§3.10.1.1). 
 
The OEM retrievals should be considered in priority and PWLR3 profiles be used when the 
former information is not available. 
 
There exists a large diversity of stability indicators which have been conceived from 
atmospheric sounding profiles to assess thunderstorm risks, historically from in situ 
radiosonde, e.g. [Haklander and Delden 2003]. Their significance to predicting storms have been 
assessed through their correlation with actual records of severe weather events (wind gusts, 
lightning, hail, flood…) in difference contexts, see e.g. [Haklander and Delden 2003][Kunz 
2007][Putsay et al. 2017]. Storm forecasting however practically involves complex analyses of 
several numerical model outputs, completed with ground- and space-based observations, to 
evaluate the dynamic evolution of weather systems through a range thermodynamic 
parameters. This includes snapshots anterior to the time the forecasts are being made and 
projections into the future. The wind information is also an important ingredient of now- and 
short-term forecasting. It is hence difficult in such studies to try to relate directly actual severe 
weather developments to a particular stability index taken in isolation or regarded as a static 
representation. Also, different combination of kinetic parameters may be regarded depending 
on the location and on the weather situations. The Table 5 therefore proposes an initial set of 
stability indices to be generated, which can be reviewed in future as more experience will be 
made with e.g. Polar satellite sounding products. This list aims continuity with MSG GII 
heritage and consistency with the MTG-FCI follow-up products [FCI L2 PS]. It is completed 
with a few more indices collected in the literature and from initial interactions with forecasters. 

http://www.essl.org/
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Identifier Full name Short description 
LI Lifted-index [Galway 1956] Difference between the environment temperature 

at 500 and the temperature of a surface-air parcel 
lifted adiabatically to that level. 

K-index K-index [George 1960] Combined index assessing the potential for 
thunderstorm development concerning mid-level 
temperature lapse rate (between 500 and 850 hPa 
levels) and humidity (850 hPa dewpoint, dewpoint 
depression, DD at 700 hPa). 

LPW Layer Precipitable Water Partial columnar amounts of water-vapour in 
layers. The boundaries are configurable and 
initially defined as [surface to 850 hPa] ; [850 to 
500 hPa] ; [500 hPa to top of atmosphere] 

Dθe DTHETAE [Atkins and 
Wakimoto 1991] 

Used to diagnose areas with vertically decreasing 
equivalent potential temperature, which are 
considered to be conditionally unstable. 

MB Maximum Buoyancy 
[König et al. 2001] 

Similar to DTHETAE, looking for vertically 
decreasing equivalent potential temperature in a 
larger vertical domain. 

SBCAPE 
or CAPE 

Surface-Based Convective 
Available Potential Energy 

Amount of potential energy available for 
convection to an air parcel theoretically lifted to 
the level of free convection (LFC) and which 
would further ascent from its own buoyancy. It 
also relates to the maximum potential vertical 
speed within an updraft. 
Small or negative CAPE values are indicative of 
stable atmospheres.  

MLCAPE Mixed-Layer CAPE Same concept as SBCAPE, but evaluated with the 
air parcel average located in the lowest 100-mb. It 
is commonly used to assess instability when the 
atmosphere is well mixed (e.g. in the afternoon) 

MUCAPE Maximum Unstable CAPE It is the maximum of CAPE values computed for 
every level in the first 300 to 500 hPa (upper limit 
configurable). It helps assessing the possibility of 
elevated convections in case of low level 
inversions (e.g. at night or behind a cold front). 

Table 5: List of stability indices in IRS L2 products 
 
The corresponding algorithms for their computation are detailed in the following subsections. 
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Figure 30: Conditional instability illustrated with a real atmospheric sounding from IASI-B  
near Tuzla (Bosnia and Herzegivona) on 10 August 2018. 

 
We present hereafter and with the Figure 30 a simple overview of the ingredients involved in 
the computation of stability indices and assessment of convective mechanisms. It is illustrated 
with a real atmospheric sounding from IASI-B on 10/08/2018 near Tuzla (Boasnia and 
Herzegovina), where the retrieved temperature profiles is drawn in blue and humidity in red. 
The Lifting condensation level (LCL) is the level where the surface air parcel theoretically 
lifted in an adiabatic way reaches saturation (along the dry adiabat, solid line top-left to bottom 
right diagonal on Figure 30). Then, if theoretically further lifted, this air parcel would follow 
the saturated adiabats on the tephigram until it reaches the Level of Free Convection (LFC). 
From there onwards, the air parcel –warmer therefore less dense than the environment- would 
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continue rising from its own buoyancy until the temperature of the rising parcel meets the 
environment temperature and hence the Equilibrium Level (EL). The acceleration that air 
parcel will experience can be related to the difference in temperature with respect to the 
temperature of the surrounding air at each successive level. We hence define the convective 
available potential energy (CAPE) as the surface between the rising parcel temperature (dash 
cyan line) and that of the environment (blue profile) between LFC and EL. It is displayed with 
the ‘plus’ sign on cyan background. On the contrary, the area delimited below the LFC 
corresponds to the amount of energy necessary to force the surface air parcel to rise (as it 
remains cooler and so denser than the environment). It is the Convective Inhibition (CIN) and 
is represented with the ‘minus’ sign on yellow background. 
 

3.10.1.3 Lifted Index 
The Lifted-index 𝐿𝐿𝐿𝐿 expresses the difference between the theoretical temperature of an air 
parcel lifted at 500 hPa and its environment. It is computed as follows 

𝐿𝐿𝐼𝐼 = 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 −  𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 eq( 

56) 
Where 

• 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎 is the air temperature at 500 hPa, interpolated logarithmically with pressure from 
the retrieved profiles between the adjacent pressure levels as described in §4.1; 

• 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is the theoretical temperature of the air parcel lifted from surface to 500 hPa. 

 
The surface air parcel is defined as the average (linearly with pressure) temperature and 
humidity content of the lowest 100 hPa in the atmosphere, with the following notation: 

• 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 the surface air temperature 
• 𝑞𝑞𝑠𝑠𝑠𝑠𝑠𝑠 the surface air specific humidity 
• 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 the surface air pressure 

 
The surface air parcel theoretically lifted almost always reaches the condensation level (LCL) 
along the dry adiabat before the 500 hPa level and then follows the moist adiabat (see Figure 
30). The computation of the temperature and pressure at LCL, 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿, is described in 
§4.15. 
 
In the rare events where 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 is lower than 500 hPa (i.e. LCL is higher than 500 hPa in altitude), 
the temperature of the near-surface air parcel simply follows the dry adiabat until 500 hPa. The 
lifted air temperature 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 in eq( 56) can then be inferred directly from eq( 109) in §4.13, 
with 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 500 ℎ𝑃𝑃𝑃𝑃. 
 
 
In most situations, the lifting condensation level is well below the 500 hPa height (i.e. 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 > 
500 hPa) and the air parcel follows the moist adiabat (dash line in Figure 30) between 𝑝𝑝𝐿𝐿𝐶𝐶𝐶𝐶 and 
500 hPa. Firstly, the equivalent potential temperature for the surface air parcel, 𝜃𝜃𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠, is 
calculated using 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 and the humidity at surface following eq( 111) in §4.13. 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 in eq( 56) 
is then computed as the difference: 

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑇𝑇1 −  𝑇𝑇2 

eq( 
57) 
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𝑇𝑇1 is the temperature that a totally dry air parcel of temperature θ𝑒𝑒
𝑠𝑠𝑠𝑠𝑠𝑠 at 1000 hPa would have if 

adiabatically displaced to 500 hPa. It is calculated after eq( 109) with 1000 and 500 hPa as 
pressure limits, θ𝑒𝑒

𝑠𝑠𝑠𝑠𝑠𝑠 as origin temperature and assuming totally dry air, i.e. 𝑞𝑞=0 in eq( 106) and 
eq( 107); 
 
𝑇𝑇2 is computed using an empirical regression scheme [Doswel et al 1982]. The following steps are 
involved: 

3.10.1.3.1 Compute t 

𝑡𝑡 = 𝑇𝑇1 −  293.16 eq( 
58) 

3.10.1.3.2 If 𝒕𝒕 < 𝟎𝟎 then : 

𝑇𝑇2 =
15.13
𝑃𝑃4

 eq( 
59) 

 

3.10.1.3.3 else: 

𝑇𝑇2 =
29.93
𝑃𝑃4

+ 0.96𝑡𝑡 − 14.8 eq( 
60) 

 
In both equations eq( 59) and eq( 60), the term P is a third order polynomial of t: 
 

𝑃𝑃 = 1 + 𝑐𝑐1𝑡𝑡 + 𝑐𝑐2𝑡𝑡2 + 𝑐𝑐3𝑡𝑡3 
eq( 
61) 

 
 

 t ≤ 0 t > 0 

c1 -8.8416605 E-03 +3.6182989 E-
03 

c2 +1.4714143 E-
04 

-1.3603273 E-05 

c3 -9.6719890 E-07 +4.9618922 E-
07 

Table 6: Values of 𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐, 𝒄𝒄𝟑𝟑 (dependent on the value of 𝒕𝒕) 
 
This final 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 of eq( 57), is used in equation eq( 56) to complete the computation of the 
Lifted Index.  
 
 
Negative 𝐿𝐿𝐿𝐿 values correspond to a surface air parcel potentially warmer than the environment 
at 500 hPa if lifted to this level, and therefore unstable. 
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In case the surface pressure is below 500 hPa, the lifted index is not defined. 
 

3.10.1.4 K-Index, KI 
The K-index, 𝐾𝐾𝐾𝐾, is a combined index to assess the potential for thunderstorm development 
based on mid-level temperature lapse rate and humidity [George 1960]. It writes: 
 

𝐾𝐾𝐾𝐾 = �𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎850 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎500�+ 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎850 − �𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎700 − 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎700� − 273.15 eq( 
62) 

Where 
• 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑝𝑝  is the atmospheric temperature at pressure level 𝑝𝑝 = {850, 700, 500} hPa. The 
temperature at the adjacent respective pressure levels in the retrieved profile are 
interpolated to the target pressure, logarithmically with pressure (§4.1). 

• 𝑇𝑇𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝  is the dew point temperatures at 𝑝𝑝 = {850, 700} hP. The humidity at the adjacent 

respective pressure levels in the retrieved profile are interpolated to the target pressure, 
logarithmically with pressure (§4.1), and converted to dew point temperature as 
described in section 4.9. 

 
All temperature values in eq( 62) are expressed in Kelvin, the K-Index, however, is commonly 
expressed in deg Celsius, which explains the term 273.15 subtracted in that equation. 
 
In case the surface pressure is below 850 hPa, the K-Index is not defined. 

3.10.1.5 Layer-Precipitable Water, LPW 
The LPW shall contain the vertically integrated humidity partial columns in a limited number 
of atmospheric layers. The actual number of layers and their boundaries shall be configurable. 
As an initial configuration, the following three layers are defined: 

i. Surface to 850 hPa 
ii. 850 to 500 hPa 
iii. 500 hPa to top of atmosphere 

 
The integration of the partial columns is performed with the retrieved profiles as described in 
section 4.2. 

3.10.1.6 Maximum Buoyancy, MB 
After [König et al. 2001], the maximum buoyancy index, 𝑀𝑀𝑀𝑀, aims the identification of areas with 
vertically decreasing equivalent potential temperature, which are considered to be conditionally 
unstable. It is the difference between the maximum equivalent potential temperature in the 
lower troposphere, from surface to 850 hPa, and the minimum equivalent temperature in the 
free troposphere from 700 to 300 hPa. It writes: 
 

𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑒𝑒]𝑆𝑆𝑆𝑆𝑆𝑆850 ℎ𝑃𝑃𝑃𝑃 −𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑒𝑒]700 ℎ𝑃𝑃𝑃𝑃
300 ℎ𝑃𝑃𝑃𝑃 eq( 

63) 
The equivalent potential temperature θ𝑒𝑒 are computed from the retrieved profiles as described in eq( 
111) and section 4.13. 
 
If the surface pressure is below 850 hPa, the MB index is not computed. 
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3.10.1.7 DTHETAE, 𝚫𝚫𝚫𝚫𝒆𝒆 
The DTHETAE and maximum buoyancy (§3.10.3.4) indexes are similar diagnostic 
parameters, diagnose conditional instability with the maximum gradient of equivalent potential 
temperature between surface and elevated layers. DTHETAE was first defined [Atkins and 
Wakimoto 1991] and declined in several versions with different layer configurations where the 
maximum/minimum equivalent potential temperature are looked for. Dry air decreases the 
equivalent potential temperature, hence DTHETAE can be high not only due to steep 
temperature lapse rate but also because of presence of dry layers in the mid-troposphere. Thus, 
high DTHETAE can be sometimes favourable also for convection with strong downdrafts. In 
this approach, DTHETAE is evaluated as follows: 

𝛥𝛥𝛥𝛥𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑒𝑒]𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑒𝑒]𝑆𝑆𝑆𝑆𝑆𝑆500 ℎ𝑃𝑃𝑃𝑃 eq( 
64) 

Where maxθ𝑒𝑒]𝑆𝑆𝑆𝑆𝑆𝑆 is the maximum equivalent potential temperature θ𝑒𝑒 evaluated according to eq( 111) 
and section 4.13 in the first 100 hPa above surface and minθ𝑒𝑒]𝑆𝑆𝑆𝑆𝑆𝑆500 ℎ𝑃𝑃𝑃𝑃 is the minimum equivalent potential 
temperature evaluated between surface and 500 hPa. 
 
If the surface pressure is below 500 hPa, the DTHETAE parameter is not defined. 
 

3.10.1.8 Available Potential Energy indices, CAPE and CIN 
The acceleration 𝑎⃗𝑎 experienced by an air parcel due to density differences (buoyancy 
acceleration) with surrounding air can be related to the differences in temperature between the 
air parcel, 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, and in its environment, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒. 

𝑎⃗𝑎 =
�𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒�

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒
𝑔⃗𝑔 

eq( 
65) 

 𝑔⃗𝑔 being the gravitational field. 
 
When the parcel is warmer than its environment (less dense), the buoyancy is positive and in 
the absence of other processes, the air parcel would naturally rise. The integral of the theoretical 
accelerations an air parcel would experience if theoretically moved between two atmospheric 
levels relates to the available potential energy (APE) [Lorenz 1955]. It can be written between 
the altitudes 𝑧𝑧1 < 𝑧𝑧2 or the atmospheric pressure levels 𝑝𝑝1 > 𝑝𝑝2 as: 
 

𝐴𝐴𝐴𝐴𝐴𝐴 = �
�𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒�

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒
𝑔𝑔 𝑑𝑑𝑑𝑑

𝑧𝑧2

𝑧𝑧1
= −𝑅𝑅𝑑𝑑 � �𝑇𝑇𝑣𝑣

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒� 𝑑𝑑 ln𝑝𝑝
𝑝𝑝2

𝑝𝑝1
 

eq( 
66) 

Where T𝑣𝑣 is the virtual temperature (§4.10).  
 
CIN: 
When the integral is negative, an external source of energy is necessary to move the parcel upwards. These 
negative areas inhibit the convection and we define the Convective INhibition as the area between the parcel 
origin and the LFC (yellow area in Figure 30), if there is one. 
 
CAPE: 
Conversely, positive areas correspond to convective available potential energy for the parcel (positive 
buoyancy). We define here the convective available potential energy (CAPE) as the integral between the 
LFC and EL (cyan area in Figure 30). 
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The evaluation of the differences between environment and parcel temperatures along the theoretical ascent 
and the computation of CIN and CAPE are described hereafter. 

3.10.1.8.1 Procedure to computing convective inhibition and available potential energy 

For a given retrieved profile of temperature 𝑇𝑇 and water-vapour mixing ratio 𝑟𝑟 (see 𝑟𝑟𝐻𝐻2𝑂𝑂 in §4.9) defined 
on a pressure grid with 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 levels, let 𝑖𝑖 be the origin level of the air parcel for which the available potential 
energy will be assessed, with the corresponding pressure 𝑝𝑝𝑖𝑖, temperature 𝑇𝑇𝑖𝑖 and humidity 𝑟𝑟𝑖𝑖: 

I. Characterise the LCL (§4.15) corresponding to the air parcel at original level 𝑖𝑖 
II. Compute the virtual temperatures 𝑇𝑇𝑣𝑣,𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑣𝑣,𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 at level origin 𝑖𝑖, with 𝑇𝑇𝑖𝑖 and 𝑟𝑟𝑖𝑖 in eq( 105) of 

§4.10 
III. Let initialise the following variables 

 CIN=0 and CAPE=0 
 A temporary variable sum 𝜁𝜁 = 0.0 
 𝑟𝑟0𝐺𝐺 = 𝑟𝑟𝑖𝑖 
 𝑇𝑇0𝐺𝐺 = 𝑇𝑇𝑖𝑖 
 𝑠𝑠𝑝𝑝,𝑖𝑖, the pseudo adiabatic entropy at pressure level 𝑖𝑖 [Bryan 2008] 

𝑠𝑠𝑝𝑝,𝑖𝑖 = 1005.7 ∗ ln𝑇𝑇𝑖𝑖 − 287.04 ∗ ln�𝑝𝑝𝑖𝑖 − 𝑒𝑒𝑣𝑣,𝑖𝑖�+
2.501 ∗ 106 − 2320(𝑇𝑇𝑖𝑖 − 273.15)

𝑇𝑇𝑖𝑖
∗ 𝑟𝑟𝑖𝑖

− 461.5 ∗ 𝑟𝑟𝑖𝑖 ln�𝑒𝑒𝑣𝑣,𝑖𝑖/𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� 
eq( 67 ) 

With 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 the water-vapour saturation pressure as explained in section 4.9 eq( 93 ) and 𝑒𝑒𝑣𝑣,𝑖𝑖 is the 
partial pressure of water-vapour at level I, computed after eq( 99 ) in section 4.9. 

 
IV. LOOP upward above level 𝑖𝑖 through each level 𝑗𝑗 (𝑝𝑝𝑗𝑗 < 𝑝𝑝𝑖𝑖) of the retrieved profile (up to 100 hPa) 

i. Compute the environment virtual temperature 𝑇𝑇𝑣𝑣,𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒 with 𝑇𝑇𝑗𝑗 and 𝑟𝑟𝑗𝑗in eq( 105) of §4.10 

ii. Compute the theoretical virtual temperature 𝑇𝑇𝑣𝑣,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for the air parcel 

IF 𝑝𝑝𝑖𝑖 ≥ 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿 THEN the parcel follows the dry adiabat 
a. Compute 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  the temperature of the parcel lifted at pressure 𝑝𝑝𝑗𝑗, using eq( 109) 
of §4.13 with temperature 𝑇𝑇𝑖𝑖 and pressure 𝑝𝑝𝑖𝑖 at origin level 𝑖𝑖. 

b. 𝑇𝑇𝑣𝑣,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 is then computed with 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑟𝑟𝑖𝑖 in eq( 105) of §4.10 
 
 
ELSE the lifted parcel follows the moist adiabat. The lifted parcel temperature and mixing 
ratio along the pseudo adiabatic ascent up to level 𝑗𝑗 is solved iteratively. 
 Let compute 𝑟𝑟𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠, the saturation mixing ratio at level 𝑗𝑗. First evaluate the water-

vapour saturation pressure 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗 at level 𝑗𝑗 with environment temperature 𝑇𝑇𝑗𝑗 after 
eq( 93 ) of section 4.9. Then derive 𝑟𝑟𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 from  using 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗. 

 Let compute 𝐿𝐿𝑗𝑗
𝑣𝑣𝑣𝑣𝑣𝑣 = 2.501 ∗ 106 − 2320�𝑇𝑇𝑗𝑗 − 273.15�,  eq( 68 ) 

the latent heat of vaporisation in the environment at pressure level 𝑗𝑗. 
 Let compute 𝑠𝑠𝑝𝑝,𝑗𝑗

𝐿𝐿 , an intermediate factor of the pseudo-adiabatic entropy 

 𝑠𝑠𝑝𝑝,𝑗𝑗
𝐿𝐿 = �1005.7 +  4190 ∗ 𝑟𝑟𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 +

𝐿𝐿𝑗𝑗
𝑣𝑣𝑣𝑣𝑣𝑣∗𝐿𝐿𝑗𝑗

𝑣𝑣𝑣𝑣𝑣𝑣∗𝑟𝑟𝑗𝑗
𝑠𝑠𝑠𝑠𝑠𝑠

461.5∗𝑇𝑇𝑗𝑗∗𝑇𝑇𝑗𝑗
� 𝑇𝑇𝑗𝑗� ,  eq( 69 ) 

 
 Let initialise 
 The iterated lifted temperature 𝑇𝑇𝑗𝑗𝐺𝐺 = 𝑇𝑇𝑗𝑗 
 The iterated lifted mixing ratio 𝑟𝑟𝑗𝑗𝐺𝐺 = 𝑟𝑟𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 
 
 Solve iteratively the conditions for the lifted parcel on the moist adiabat 

LOOP on configurable number of iterations (typically 7 maximum for convergence) 

. Compute 𝑐𝑐𝑝𝑝𝑝𝑝 = 𝜁𝜁+  4190 ∗ 1
2
�𝑟𝑟𝑗𝑗𝐺𝐺 + 𝑟𝑟0𝐺𝐺� ∗ ln

𝑇𝑇𝑗𝑗𝐺𝐺

𝑇𝑇0𝐺𝐺
�  eq( 70 ) 
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. Compute 𝑒𝑒𝑣𝑣,𝑗𝑗
𝐺𝐺  the iterated water-vapour partial pressure using 𝑟𝑟𝑗𝑗𝐺𝐺 and 𝑝𝑝𝑗𝑗  in eq( 

93 ) of section 4.9.  
. Compute the pseudo-adiabatic entropy increment 𝑠𝑠𝑝𝑝,𝑗𝑗

𝐺𝐺  as 
   𝑠𝑠𝑝𝑝,𝑗𝑗

𝐺𝐺 = 1005.7 ∗ ln𝑇𝑇𝑗𝑗𝐺𝐺 − 287.04 ∗ ln�𝑝𝑝𝑗𝑗 − 𝑒𝑒𝑣𝑣,𝑗𝑗
𝐺𝐺 �+ 

   
2.501∗106−2320�𝑇𝑇𝑗𝑗

𝐺𝐺−273.15�

𝑇𝑇𝑗𝑗
𝐺𝐺 𝑟𝑟𝑗𝑗𝐺𝐺 + 𝑐𝑐𝑝𝑝𝑝𝑝 eq( 71 ) 

 
. Update 𝑇𝑇𝑗𝑗𝐺𝐺, the lifted temperature 𝑇𝑇𝑗𝑗𝐺𝐺+= �𝑠𝑠𝑝𝑝,𝑖𝑖 − 𝑠𝑠𝑝𝑝,𝑗𝑗

𝐺𝐺 � 𝑠𝑠𝑝𝑝,𝑗𝑗
𝐿𝐿�   eq( 72 ) 

. Compute 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗
𝐺𝐺  the saturated water-vapour pressure in the lifted parcel, using 

updated 𝑇𝑇𝑗𝑗𝐺𝐺in eq( 93 ) of section 4.9. 
. Update 𝑟𝑟𝑗𝑗𝐺𝐺, the lifted mixing ratio using 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠,𝑗𝑗

𝐺𝐺  in  of section 4.9. 
ENDLOOP 
Set 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑗𝑗𝐺𝐺 and 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑟𝑟𝑗𝑗𝐺𝐺  

𝑇𝑇𝑣𝑣,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is then computed with 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  in eq( 105) of §4.10 

Set 𝑟𝑟0𝐺𝐺 = 𝑟𝑟𝑗𝑗𝐺𝐺, 𝑇𝑇0𝐺𝐺 = 𝑇𝑇𝑗𝑗𝐺𝐺 and 𝜁𝜁 = 𝑐𝑐𝑝𝑝𝑝𝑝 for the next pressure level. 
ENDELSE 
 

iii. Compute the available potential energy for the layer defined by 𝑝𝑝𝑗𝑗−1 and 𝑝𝑝𝑗𝑗 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 = 𝑅𝑅𝐿𝐿 �
�𝑇𝑇𝑣𝑣,𝑗𝑗−1

𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑇𝑇𝑣𝑣,𝑗𝑗
𝑒𝑒𝑒𝑒𝑒𝑒�

2
−
�𝑇𝑇𝑣𝑣,𝑗𝑗−1

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑇𝑇𝑣𝑣,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2
� ∗

�𝑝𝑝𝑗𝑗−1 − 𝑝𝑝𝑗𝑗�
�𝑝𝑝𝑗𝑗−1 + 𝑝𝑝𝑗𝑗�

∗ 2 eq( 73 ) 

where 𝑅𝑅𝐿𝐿 = 287.06 𝐽𝐽.𝑘𝑘𝑘𝑘−1.𝐾𝐾−1 is the specific gas constant for dry air. 
 

iv. Test 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  vs 𝑇𝑇𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒 to identify a potential level of free convection and then equilibrium 

level. 
WHILE  �𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 < 𝑇𝑇𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒� -i.e. the level 𝑗𝑗 is below LFC-: 
𝐶𝐶𝐶𝐶𝐶𝐶+= 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 eq( 74 ) 

 
Then WHILE  �𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 𝑇𝑇𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒� –i.e. the level 𝑗𝑗 is above LFC and below EL- 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+= 𝐴𝐴𝐴𝐴𝐴𝐴𝑗𝑗 eq( 75 ) 

The upward iterations on level 𝑗𝑗 must stop once the EL is met or if 𝑝𝑝𝑗𝑗<100 hPa. 
ENDLOOP on level 𝑗𝑗 

3.10.1.8.2 Surface-based CAPE (SBCAPE or CAPE) and CIN 
The surface-based CAPE, also referred to as SBCAPE or CAPE for simplicity here, and CIN 
are computed following the procedure described in §3.10.3.6.1, where the air parcel at origin 
is defined (temperature, humidity, pressure) in the first atmospheric level above surface. 

3.10.1.8.3 Mixed-Layer CAPE, MLCAPE 
The mixed-layer CAPE, or MLCAPE, is computed following the procedure described in 
§3.10.3.6.1, where the air parcel at origin is defined as the average (linearly with pressure) 
temperature, humidity and pressure in the first 100 hPa above surface. 

3.10.1.8.4 Maximum Unstable CAPE, MUCAPE 
The maximum unstable CAPE, or MUCAPE, is the maximum of the individual CAPE values 
computed following the procedure described in §3.10.3.6.1 for every level in the first 300 . 
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4 GENERIC FUNCTIONS 
This section describes the algorithms that may be used at different places of the IRS L2 
processing sequence. 

4.1 Vertical interpolations of atmospheric temperature and constituent profiles 
The temperature, water-vapour and ozone profiles are interpolated according to the following 
interpolation schemes in the standard 101-pressure grid. 
The temperature varies approximately linearly with the height, whereas the pressure decreases 
exponentially with height, so that a suitable interpolation of temperature 𝑇𝑇 at pressure 𝑝𝑝 in a 
pressure-level grid reads as follows in eq( 76): 
 

𝑇𝑇 =  𝑇𝑇0 +  
𝑇𝑇1 − 𝑇𝑇0
𝑙𝑙𝑙𝑙 �𝑝𝑝1𝑝𝑝0

�
 𝑙𝑙𝑙𝑙 �

𝑝𝑝
𝑝𝑝0
� eq( 76) 

 
where 𝑝𝑝0 and 𝑝𝑝1 are pressure levels surrounding p, and 𝑇𝑇0 and 𝑇𝑇1 are the corresponding 
temperature values. The CO2 profiles is interpolated in the same way as temperature but the 
grid can be different. 
 
The water-vapour mixing ratio W decreases exponentially with height, so that the interpolation 
at 𝑝𝑝 on a pressure grid is double-logarithmic: 
 

ln(𝑊𝑊) = 𝑙𝑙𝑙𝑙(𝑊𝑊0) +  
𝑙𝑙𝑙𝑙 �𝑊𝑊1

𝑊𝑊0
�

𝑙𝑙𝑙𝑙 �𝑝𝑝1𝑝𝑝0
�

 𝑙𝑙𝑙𝑙 �
𝑝𝑝
𝑝𝑝0
� eq( 77) 

 
where 𝑝𝑝0and 𝑝𝑝1 are pressure levels surrounding 𝑝𝑝, and 𝑊𝑊0 and 𝑊𝑊1 are the corresponding water-
vapour values. Ozone profiles are interpolated in the same way as water-vapour. 
 

4.2 Vertical integration of atmospheric constituent concentrations 
To evaluate the total column TC of an atmospheric constituent, two quantities have to be 
evaluated: 

• Partial columnar amount 𝑐𝑐𝑖𝑖 between two pressure levels 𝑝𝑝𝑖𝑖 > 𝑝𝑝𝑖𝑖+1 
• Partial columnar amount 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠between the surface pressure and the first pressure level 

𝑝𝑝1 
 
Let 𝑝𝑝𝑖𝑖 and 𝜇𝜇𝑖𝑖 be the pressure and mass mixing ratio of a given atmospheric constituent defining 
a vertical profile on 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 levels. With 𝑝𝑝𝑖𝑖 and 𝜇𝜇𝑖𝑖 expressed in hPa and kg/kg, respectively, the 
partial columnar amount 𝑐𝑐𝑖𝑖 in kg/m2 of this atmospheric constituent in the layer between two 
pressure levels 𝑝𝑝𝑖𝑖 > 𝑝𝑝𝑖𝑖+1 is given by the formula 
 

𝑐𝑐𝑖𝑖 =
𝜇̅𝜇(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑖𝑖+1) ∗ 100

𝑔𝑔(𝑧𝑧̅,𝜙𝜙) ; 𝑖𝑖 = 0. .𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙 − 2 eq( 78) 

 
Where 
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𝜇̅𝜇 = (𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑖𝑖+1)/2 eq( 79) 
𝑧𝑧̅ = (𝑧𝑧𝑖𝑖 + 𝑧𝑧𝑖𝑖+1)/2 eq( 80) 

 
Are the average mixing ratio and altitude of the layer defined by the pressure levels 𝑝𝑝𝑖𝑖 and 
𝑝𝑝𝑖𝑖+1. 
 
𝑔𝑔(𝑧𝑧̅,𝜙𝜙) is the local gravitational acceleration depending on geodetic latitude, 𝜙𝜙, and height, 𝑧𝑧̅, 
as defined in 4.3, eq( 87). The conversion from pressure levels to height is done as described in 
4.3, starting from the surface level, whose elevation is known (3.5.3). Alternatively, it may also 
be approximated as follows: 

𝑧𝑧̅ = −4000(log �
𝑝𝑝i

1013
� + log �

𝑝𝑝i+1
1013

�) eq( 81) 
 
To compute the integrated total columnar amount 𝑇𝑇𝑇𝑇 of an atmospheric constituent, all partial 
columnar amounts of layers between the successive pressure levels on which the mixing ratio 
profile is provided must be computed as indicated and summed. 
 
To compute the partial columnar amount 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 in the layer between the surface pressure and 
the first pressure grid level above the surface on which the profile is defined, the mixing ratio 
is assumed constant in this layer and equal to the mass mixing ratio at the first pressure grid 
level above the surface. Hence: 

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜇𝜇0(𝑃𝑃𝑆𝑆 − 𝑝𝑝0)/𝑔𝑔(𝑧𝑧̅,𝜙𝜙) eq( 82) 
 
Where 𝑃𝑃𝑆𝑆 is the surface pressure and 𝑧𝑧̅ = (𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑧𝑧0), with 𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 the surface elevation and 𝑧𝑧0 
the height of the first pressure grid level. 
 
Finally, the total column writes: 

𝑇𝑇𝑇𝑇 = 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + � 𝑐𝑐𝑖𝑖

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙−2

𝑖𝑖=0

 eq( 83) 

4.3 Conversion from pressure to height levels 
The conversion between pressure and height levels is done with the barometric equation 
(hydrostatic equilibrium). It is important that this equation is applied layer-wise as it represents 
an integration where constant temperature and humidity is assumed between the two 
consecutive levels defining a layer. The height difference between two levels 𝑖𝑖 and 𝑗𝑗 with 
known pressures pI  and pj is given by the following: 

𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗 =
−𝑅𝑅𝐿𝐿𝑇𝑇�𝜈𝜈
𝑔𝑔(𝑧𝑧𝑖𝑖,𝜙𝜙) . 𝑙𝑙𝑙𝑙 �

𝑝𝑝𝑖𝑖
𝑝𝑝𝑗𝑗
� eq( 84) 

Alternately, for known heights and the ratio of the pressures at levels 𝑖𝑖 and 𝑗𝑗 is 
𝑝𝑝𝑖𝑖
𝑝𝑝𝑗𝑗

= 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝑔𝑔(𝑧𝑧𝑖𝑖,𝜙𝜙)�𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗�

𝑅𝑅𝐿𝐿𝑇𝑇�𝜈𝜈
� eq( 85) 

where 
𝑅𝑅𝐿𝐿 = 287.06 J. K−1. kg−1 is the gas constant for dry air, 
𝑇𝑇�𝜈𝜈 is the layer mean virtual temperature, represented as 

𝑇𝑇�𝜈𝜈 = (𝑇𝑇𝜈𝜈,𝑖𝑖 + 𝑇𝑇𝜈𝜈,𝑗𝑗)/2 eq( 86) 
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Where 𝑇𝑇𝜈𝜈,𝑖𝑖 is computed as described in 4.10 with eq( 105) 
 

The acceleration due to gravity 𝑔𝑔 (in m.s-2) is a function of geographic latitude 𝜙𝜙 and height 𝑧𝑧 
(in m): 

                 𝑔𝑔(𝑧𝑧,𝜙𝜙) = 9.80616�1 − 0.0026373 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) + 0.0000059𝑐𝑐𝑐𝑐𝑐𝑐2(𝜙𝜙)� 
−(3.085462 ∗ 10−6 + 2.27 ∗ 10−9 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙))𝑧𝑧

+ (7.254 ∗ 10−13 + 10−20 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙))𝑧𝑧2 
−(1.517 ∗ 10−19 + 6 ∗ 10−22 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙))𝑧𝑧3 

eq( 87) 

 
The form of eq( 84) and eq( 85) requires that the calculations always begin at a level with 
known start values of 𝑧𝑧 and 𝑝𝑝. Usually, surface pressure and surface height are the known lower 
boundary values and Equations eq( 84) and eq( 85) are iterated towards the top of the 
atmosphere. The surface height for each MTG-IRS pixel is retrieved as specified in 3.5 with 
the DEM atlas. 

4.4 Linear interpolation 
The linear interpolation of a function y(x) at point x from the function values y0 and y1 at points 
x0 and x1 writes: 

𝑦𝑦 =  𝑦𝑦0 +  (𝑦𝑦1 −  𝑦𝑦0)
(𝑥𝑥 −  𝑥𝑥0)
(𝑥𝑥1 −  𝑥𝑥0) eq( 88) 

4.5 Bilinear interpolation 
The bi-linear interpolation of a function f(x,y) at the point (x;y) from the function values f00, 
f01, f11 and  f10 at points (x0; y0), (x0; y1), (x1; y1), (x1; y0) on a regular 2D-grid writes: 

𝑓𝑓(𝑥𝑥,𝑦𝑦) =  𝛼𝛼00 (𝑥𝑥1 −  𝑥𝑥)(𝑦𝑦1 −  𝑦𝑦) + 
𝛼𝛼10 (𝑥𝑥 − 𝑥𝑥0)(𝑦𝑦1 −  𝑦𝑦) + 
𝛼𝛼01 (𝑥𝑥1 −  𝑥𝑥)(𝑦𝑦 − 𝑦𝑦0) + 
𝛼𝛼11 (𝑥𝑥 − 𝑥𝑥0)(𝑦𝑦 − 𝑦𝑦0) 

eq( 89) 

 
Where 𝜶𝜶𝒊𝒊𝒊𝒊 =  𝒇𝒇(𝒙𝒙𝒊𝒊 ,𝒚𝒚𝒋𝒋)

(𝒙𝒙𝟏𝟏− 𝒙𝒙𝟎𝟎)(𝒚𝒚𝟏𝟏− 𝒚𝒚𝟎𝟎)  

4.6 Euclidean norm 

The Euclidean norm of a vector 𝑉𝑉�⃗ = [𝑣𝑣1, 𝑣𝑣 2, … , 𝑣𝑣𝑛𝑛] of dimension𝑛𝑛, noted �𝑉𝑉�⃗ �, writes: 

�𝑉𝑉�⃗ � = ��𝑣𝑣𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 
eq( 90) 

4.7 Dot product 

The dot product, also called scalar product, of two vectors 𝑈𝑈��⃗ = [𝑢𝑢1,𝑢𝑢 2, … ,𝑢𝑢𝑛𝑛] and 𝑉𝑉�⃗ =
[𝑣𝑣1, 𝑣𝑣 2, … , 𝑣𝑣𝑛𝑛] of dimension n writes: 

𝑈𝑈��⃗ ∙ 𝑉𝑉�⃗ = �𝑢𝑢𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑣𝑣𝑖𝑖 eq( 91) 
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4.8 Vector product 

The vector product, also called cross product, of two vectors 𝑉𝑉1���⃗  and 𝑉𝑉2���⃗  in Cartesian coordinates 
(x,y,z) writes: 

𝑉𝑉1���⃗ × 𝑉𝑉2���⃗ = �
𝑥𝑥1
𝑦𝑦1
𝑧𝑧1
� × �

𝑥𝑥2
𝑦𝑦2
𝑧𝑧2
� = �

𝑦𝑦1𝑧𝑧2 − 𝑦𝑦2𝑧𝑧1
𝑧𝑧1𝑥𝑥2 − 𝑧𝑧2𝑥𝑥1
𝑥𝑥1𝑦𝑦2 − 𝑥𝑥2𝑦𝑦1

� eq( 92) 

4.9 Water-vapour density definitions and relationships 
The humidity concentrations can be expressed in different units. We detail here the 
representations used in various functions of the processor and detail their relationships. 
 
The water-vapour pressure, 𝒑𝒑𝑯𝑯𝟐𝟐𝑶𝑶 
The vapour pressure of moist air is defined as the partial pressure of the water-vapour present 
in the air mass. It is said to be with respect to liquid (or ice) water if the air mass is over a plane 
surface of liquid (or ice) water at the same temperature and pressure. 
 
The water-vapour saturation pressure, 𝒆𝒆𝑺𝑺 
The water-vapour saturation pressure is defined as the water-vapour pressure where two phases 
of water co-exist in neutral equilibrium. It is said to be with respect to liquid (or ice) water if 
the air mass is over a plane surface of liquid (or ice) water at the same temperature and pressure. 
The saturation water-vapour pressure, 𝑒𝑒𝑆𝑆, is given by the integrated Clausius Clapeyron 
equation, as formulated by the Goff Gratch equations [SmithMet]. 
 
Over water, the saturation water-vapour pressure in hPa is as follows: 

log10(𝑒𝑒𝑆𝑆) = −7.90298 ∗ �
𝑇𝑇𝑤𝑤𝑤𝑤
𝑇𝑇

− 1� + 5.02808 ∗ log10 �
𝑇𝑇𝑤𝑤𝑤𝑤
𝑇𝑇
� 

−1.3816 ∗ 10−7 ∗ �1011.344∗�1− 𝑇𝑇
𝑇𝑇𝑤𝑤𝑤𝑤

� − 1� +  

8.1328 ∗ 10−3 ∗ �10−3.49149∗�𝑇𝑇𝑤𝑤𝑤𝑤𝑇𝑇 −1� − 1� + log10(𝑒𝑒𝑤𝑤𝑤𝑤) 

eq( 93 ) 

where 𝑇𝑇 is the temperature in °K, 𝑇𝑇𝑤𝑤𝑤𝑤 = 373.16 °𝐾𝐾, and 𝑒𝑒𝑤𝑤𝑤𝑤 = 1013.246 ℎ𝑃𝑃𝑃𝑃. 
 
Over ice, the saturation water vapour pressure in hPa is as follows: 

log10(𝑒𝑒𝑆𝑆) = −9.09718 ∗ �
𝑇𝑇0
𝑇𝑇
− 1� − 3.56654 ∗ log10 �

𝑇𝑇0
𝑇𝑇
� + 0.876793 ∗ �1 −

𝑇𝑇
𝑇𝑇0
�

+ log10(𝑒𝑒𝑤𝑤0) 
eq( 94 ) 

where 𝑇𝑇0  =  273.15 𝐾𝐾, and 𝑒𝑒𝑤𝑤0 =  6.1071 ℎ𝑃𝑃𝑃𝑃. 
 
Water-vapour mass mixing ratio, 𝑟𝑟𝐻𝐻2𝑂𝑂 
The mass mixing ratio is the ratio of the mass of a constituent over the dry air of the parcel. It 
is expressed in kg/kg and writes for water-vapour: 

𝑟𝑟𝐻𝐻2𝑂𝑂 =
𝑀𝑀𝐻𝐻2𝑂𝑂

𝑀𝑀𝐿𝐿
.
𝑛𝑛𝐻𝐻2𝑂𝑂
𝑛𝑛𝐿𝐿

 eq( 95 ) 

Where 𝑀𝑀𝐻𝐻2𝑂𝑂 = 18.01534 𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚 is the molar mass of water and 𝑀𝑀𝐿𝐿 = 28.964 𝑔𝑔/𝑚𝑚𝑚𝑚𝑚𝑚 is the 
molar mass of dry air. 𝑛𝑛𝐻𝐻2𝑂𝑂 and 𝑛𝑛𝐿𝐿 are the number density of water-vapour and dry-air, 
respectively. 
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Specific humidity, 𝒒𝒒 
The specific humidity  𝑞𝑞 is the ratio of water-vapour mass to the air parcel’s total mass (i.e. 
moist air). It is often approximated the mass mixing ratio. It is expressed in kg/kg and writes. 

𝑞𝑞 =
𝑟𝑟𝐻𝐻2𝑂𝑂

(1 + 𝑟𝑟𝐻𝐻2𝑂𝑂)
 eq( 96 ) 

Conversely  
𝑟𝑟𝐻𝐻2𝑂𝑂 =

𝑞𝑞
(1 − 𝑞𝑞)

 eq( 97 ) 

 
Water-vapour partial pressure, 𝑝𝑝𝐻𝐻2𝑂𝑂 
Let 𝑝𝑝 and 𝑝𝑝𝐻𝐻2𝑂𝑂 be the total atmospheric pressure and the partial pressure of water-vapour in 
the air parcel, respectively. The partial pressure of water-vapour relates to the mass mixing 
ratio: 

 

𝑝𝑝𝐻𝐻2𝑂𝑂 =  
𝑟𝑟𝐻𝐻2𝑂𝑂 .𝑝𝑝

𝑀𝑀𝐻𝐻2𝑂𝑂
𝑀𝑀𝐿𝐿

+ 𝑟𝑟𝐻𝐻2𝑂𝑂
 eq( 98 ) 

And to the specific humidity 
 

𝑝𝑝𝐻𝐻2𝑂𝑂 =
𝑞𝑞.𝑝𝑝

𝑀𝑀𝐻𝐻2𝑂𝑂
𝑀𝑀𝐿𝐿

+ 𝑞𝑞(1 −
𝑀𝑀𝐻𝐻2𝑂𝑂
𝑀𝑀𝐿𝐿

)
~ 

𝑞𝑞.𝑝𝑝
0.622 + 0.378𝑞𝑞

 eq( 99 ) 

Conversely 

𝑞𝑞 ~ 
0.622 𝑝𝑝𝐻𝐻2𝑂𝑂

𝑝𝑝 − 0.378 𝑝𝑝𝐻𝐻2𝑂𝑂
 eq( 100 ) 

 
Water-vapour volume mixing ratio, 𝒘𝒘 
Another representation of water-vapour density is the volume mixing ratio, 𝑤𝑤. It is usually 
expressed in parts per million by volume or ppmv. It relates to the mass mixing ratio 𝑟𝑟𝐻𝐻2𝑂𝑂 (in 
kg/kg) as follows 

𝑤𝑤 = 106.
𝑀𝑀𝐿𝐿

𝑀𝑀𝐻𝐻2𝑂𝑂
. 𝑟𝑟𝐻𝐻2𝑂𝑂 eq( 101) 

and to the specific humidity: 

𝑤𝑤 = 106.
𝑀𝑀𝐿𝐿

𝑀𝑀𝐻𝐻2𝑂𝑂
.
𝑞𝑞

1 − 𝑞𝑞
 eq( 102) 

 
Dew point temperature, 𝑻𝑻𝒅𝒅𝒅𝒅𝒅𝒅 
The dew point temperature, 𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑, is the temperature to which a given air parcel with water-
vapour pressure 𝑝𝑝𝐻𝐻2𝑂𝑂 must be cooled at constant pressure and constant water-vapour content 
in order for saturation to occur. It can be approximated with the following formula, in Kelvin: 

𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑 =
𝑇𝑇𝑛𝑛

𝑚𝑚
𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝𝐻𝐻2𝑂𝑂/𝐴𝐴�

− 1
+ 273.15 eq( 103) 

Where 𝑇𝑇𝑛𝑛, 𝑚𝑚 and 𝐴𝐴 are configurable parameters dependent on the atmospheric temperature and 
if the saturation occurs over liquid or ice phase [Vaisala 2013]. 
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Table 7: Constants for formula eq( 103) 
 
The Relative Humidity, %RH 
The relative humidity of an air-water mixture is defined as the ratio of the partial pressure of 
water-vapour present at a given temperature and pressure, 𝑝𝑝𝐻𝐻2𝑂𝑂, to the partial pressure given 
by  of the water present at saturation for the given temperature and pressure, 𝑒𝑒𝑆𝑆. Thus the 
relative humidity of air is a function of both water content and temperature. It is expressed in 
% and writes as follows: 

%𝑅𝑅𝑅𝑅 = 100.
𝑝𝑝𝐻𝐻2𝑂𝑂
𝑒𝑒𝑆𝑆

 eq( 104) 

4.10 Virtual temperature 
The virtual temperature 𝑇𝑇𝜈𝜈 of a moist air parcel of temperature 𝑇𝑇 with specific humidity 𝑞𝑞 is 
the temperature at which a theoretical dry air parcel would have the same total pressure and 
density. It writes: 

𝑇𝑇𝜈𝜈 = 𝑇𝑇(1 + 0.608𝑞𝑞) eq( 105) 

With 𝑇𝑇 expressed in K and 𝑞𝑞 in kg/kg. 

4.11 Check for Super-saturation of Water Vapour 
The check for super-saturation requires the comparison of the retrieved water-vapour amount 
with its saturation value. For each pressure level of a given profile, the saturation humidity 𝑞𝑞𝑆𝑆 
is computed with the equation eq(100) using the saturation water-vapour pressure 𝑒𝑒𝑆𝑆 from eq( 
93 ) and eq( 94 ) as water-vapour pressure 𝑝𝑝𝐻𝐻2𝑂𝑂. If the actual specific humidity 𝑞𝑞 is higher than 
𝑞𝑞𝑆𝑆, then it is reset to 𝑞𝑞𝑆𝑆 and the correction for super-saturation is recorded in a processing flag. 

4.12 Moist air specific heat and gas constant 

Let 𝑟𝑟𝐻𝐻2𝑂𝑂 be the water-vapour mixing ratio at a given altitude, expressed in kg/kg, then the 
corresponding moist air specific heat, 𝑐𝑐𝑝𝑝,𝑚𝑚, and moist air gas constant, 𝑅𝑅𝑚𝑚, write [Bolton 
1980][Iribarne and Godson 1973]: 

𝑅𝑅𝑚𝑚 = 𝑅𝑅𝐿𝐿�1 + 0.608 𝑟𝑟𝐻𝐻2𝑂𝑂� eq( 106) 

 
𝑐𝑐𝑝𝑝,𝑚𝑚 = 𝑐𝑐𝑝𝑝�1 + 0.887 𝑟𝑟𝐻𝐻2𝑂𝑂� eq( 107) 

where 𝑅𝑅𝐿𝐿 = 287.06 𝐽𝐽.𝑘𝑘𝑘𝑘−1.𝐾𝐾−1 is the specific gas constant for dry air and 𝑐𝑐𝑝𝑝 =
1005.71 𝐽𝐽.𝑘𝑘𝑘𝑘−1.𝐾𝐾−1 is the specific heat of dry air at constant pressure. 
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4.13 Atmospheric adiabatic lapse rates 
Dry adiabatic lapse rate: In the absence of water-vapour condensation, the temperature 𝑇𝑇 of 
an unsaturated air parcel changing pressure during an adiabatic process follows the Poisson’s 
equation. Hence, the relationship between temperature 𝑇𝑇 and pressure 𝑝𝑝 at two distinct 
atmospheric levels 𝑖𝑖 and 𝑗𝑗 along the dry adiabats (illustrated in Figure 30) writes: 
 

𝑝𝑝𝑗𝑗 =
𝑝𝑝𝑖𝑖

�𝑇𝑇𝑖𝑖𝑇𝑇𝑗𝑗
�
𝑅𝑅𝑚𝑚 𝑐𝑐𝑝𝑝,𝑚𝑚�

 
eq( 108) 

and  

𝑇𝑇𝑖𝑖 = 𝑇𝑇𝑗𝑗 �
𝑝𝑝𝑖𝑖
𝑝𝑝𝑗𝑗
�

𝑅𝑅𝑚𝑚 𝑐𝑐𝑝𝑝,𝑚𝑚�

 
eq( 

109) 
 
With 𝑅𝑅𝑚𝑚 and 𝑐𝑐𝑝𝑝,𝑚𝑚 the moist air gas constant and specific heat computed as described in 
§4.12. 
 
The potential temperature is the temperature that an unsaturated parcel at temperature 𝑇𝑇 and 
pressure 𝑝𝑝 would attain if adiabatically brought at a standard pressure of 1000 hPa. It is written 
𝜃𝜃 and is computed after: 

𝜃𝜃 = 𝑇𝑇 �
1000
𝑝𝑝
�
𝑅𝑅𝑚𝑚 𝑐𝑐𝑝𝑝,𝑚𝑚�

 
eq( 

110) 
The dry adiabats (e.g. on Figure 30) are the line of constant potential temperature. 
 
Moist adiabatic lapse rate: when water-vapour condensates during an adiabatic ascent, latent 
heat is released within the air parcel as it rises. Therefore the temperature decreases less rapidly 
than the dry adiabatic lapse rate above. The saturated lapse rate significantly varies with the 
water-vapour content. Analogous to the potential temperature, 𝜃𝜃, which is preserved along the 
dry adiabat, the equivalent potential temperature, θ𝑒𝑒, expresses a constant quantity along the 
moist adiabat. It can be approximated  as [Bolton 1980]: 

𝜃𝜃𝑒𝑒 = 𝜃𝜃 exp ��
3.376
𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿

− 0.00254� ∗ 1000 ∗ 𝑟𝑟𝐻𝐻2𝑂𝑂 �1 + 0.81 ∗ 10−3 ∗ 𝑟𝑟𝐻𝐻2𝑂𝑂�� 
eq( 

111) 
With 

• 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 the temperature at the air parcel at lifting condensation level (see 4.15) 
• 𝛩𝛩 and 𝑟𝑟𝐻𝐻2𝑂𝑂 are respectively the potential temperature -eq( 110)- and water-vapour 

mixing ratio (in kg/kg) of the air parcel at the successive levels. 
 

4.14 Check for Super-Adiabatic Layering 
The lapse rate 𝑇𝑇𝑖𝑖/𝑇𝑇𝑖𝑖+1 between adjacent pressure levels 𝑝𝑝𝑖𝑖 and 𝑝𝑝𝑖𝑖+1 in the retrieved profiles 
(with 𝑝𝑝𝑖𝑖+1<𝑝𝑝𝑖𝑖) is compared to the dry adiabatic lapse 𝑏𝑏𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/𝑇𝑇𝑖𝑖+1𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 evaluated following 
equation eq( 109) in §4.13. 
 
If in the retrieved profile the ratio 𝑇𝑇𝑖𝑖/𝑇𝑇𝑖𝑖+1 < 𝑏𝑏𝑖𝑖, then a correction term has to be calculated 
according to the following: 

𝑎𝑎𝑖𝑖 =
𝑏𝑏𝑖𝑖𝑇𝑇𝑖𝑖+1 − 𝑇𝑇𝑖𝑖

1 + 𝑏𝑏𝑖𝑖
 eq( 112 ) 
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If 𝑎𝑎 is greater than the standard deviation (error estimates) of the temperature, then 𝑇𝑇𝑖𝑖 has to be 
increased by 𝑎𝑎𝑖𝑖 and 𝑇𝑇1 must be decreased by 𝑎𝑎. The correction is reported in a processing flag. 

4.15 Lifting condensation level (LCL) 
The vertical lapse rate for an unsaturated air particle theoretically lifted is the dry adiabatic 
lapse rate (solid line in Figure 30) until the lifting condensation level (LCL) is reached. 
 
The temperature at LCL, 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿, is computed first the empirical formula [Bolton 1980] (Note: 
parameters are configurable): 
 

𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 =
1

1
𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 55 −

𝑙𝑙𝑙𝑙�𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/100�
2840

 eq( 113 ) 

 
where 𝑅𝑅𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the relative humidity of this air parcel at origin (usually at surface), 
expressed in %, derived from its origin temperature and pressure (usually at surface), 𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, as described in section 4.9. 
 
The pressure at LCL, 𝑝𝑝𝐿𝐿𝐿𝐿𝐿𝐿, is the pressure of the lifted air parcel whose temperature decreased 
from 𝑇𝑇0 to 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿 during the theoretical dry adiabatic ascent. It can thus be obtained from eq( 
108) of §4.13. 
 

4.16 Slanted levels geolocation 
The purpose of this function is to compute the longitude/latitude at the vertical of discrete levels 
of a slanted profile (sub-profile points, SPP, see Figure 31), knowing their altitudes, the target 
longitude and latitude (assumed on a WGS84 ellipsoid) and given the target to satellite azimuth 
angle, the target satellite zenith angle and the reference altitude on target. 
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Figure 31: Viewing geometry of target and sub-profile points 
 
 
Let 

• 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑔𝑔𝑒𝑒𝑒𝑒, 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 be respectively the longitude and latitude of the IRS pixel centre 
(target) 

• 𝑧̂𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 be the satellite zenith and azimuth angles at target, respectively 
• ℎ be the reference altitude of the discrete level of the slanted profile 
• 𝑑𝑑 the distance between the sub-profile point (SPP) and the target (pixel centre) 
• 𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆 , 𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆 be respectively the longitude and latitude of the sub-profile point 
• 𝐴𝐴𝐴𝐴�𝑆𝑆𝑆𝑆𝑆𝑆 be the azimuth of the geodesic at the sub-profile point 

Note: the sub-satellite point, SSP, does not play a role here and is not to be confused with the 
sub-profile point SPP. 
 
Then we can write: 

𝜃𝜃 = 90 − 𝑧̂𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 eq( 114) 

𝑑𝑑 = ℎ/ tan 𝜃𝜃 eq( 115) 

 
The calculation of the geo-coordinates of SPP is implemented via Vicenty’s method [Vincenty], 
which describes a geodetic method to compute the location of a point that is at a given 
(ellipsoidal) distance and initial azimuth (direction) from another point. 
A detailed derivation of Vicenty’s method can, for instance, be found in [Vincenty]. In the below 
only the final algorithm is shown, with the limitation that the distance between the target and 
the sub-profile points along the surface of the ellipsoid, 𝑠𝑠, is approximated by 𝑑𝑑, the distance 
measured in a plane normal to the target-SPP vector in an Earth fixed frame. 
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WGS84 ellipsoid constants: 

𝑎𝑎 = 6378137 𝑚𝑚;  major semi − axes of the WGS84 ellipsoid eq( 116) 

𝑏𝑏 = 6356752 𝑚𝑚;  minor semi − axes of the WGS84 ellipsoid eq( 117) 

𝑓𝑓 = (𝑎𝑎 − 𝑏𝑏)/𝑎𝑎 eq( 118) 

Where 𝑓𝑓 is the Earth flattening. 
 
The first part of the algorithm writes: 

tan𝑈𝑈1 = (1 − 𝑓𝑓) . tan (𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) eq( 119) 

cos𝑈𝑈1 = 1/�1 + 𝑡𝑡𝑡𝑡𝑡𝑡2 𝑈𝑈1 eq( 120) 

sin𝑈𝑈1 = tan𝑈𝑈1 . cos𝑈𝑈1 eq( 121) 

𝜎𝜎1 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(tan𝑈𝑈1 . cos𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) eq( 122) 

sin𝛼𝛼 = cos𝑈𝑈1 . sin𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 eq( 123) 

cos2 𝛼𝛼 = 1 − sin2 𝛼𝛼 eq( 124) 

𝑢𝑢2 = cos2 𝛼𝛼 . (𝑎𝑎2 − 𝑏𝑏2)/𝑏𝑏2 eq( 125) 

𝐴𝐴 = 1 +
𝑢𝑢2

16384
. �4096 + 𝑢𝑢2. �−768 + 𝑢𝑢2. (320 − 175𝑢𝑢2)�� eq( 126) 

𝐵𝐵 =
𝑢𝑢2

1024
. �256 + 𝑢𝑢2. �−128 + 𝑢𝑢2. (74 − 47𝑢𝑢2)�� eq( 127) 

𝜎𝜎 =
𝑠𝑠
𝑏𝑏𝑏𝑏

; 𝑠𝑠 ~𝑑𝑑 eq( 128) 

 
Then the following sequence is iterated until the change in 𝜎𝜎 is negligible (e.g. ∆σ < 10-12). 
{ 

cos(2𝜎𝜎𝑚𝑚) = cos (2𝜎𝜎1 + 𝜎𝜎) eq( 129) 

∆σ =. �cos(2𝜎𝜎𝑚𝑚)

+
𝐵𝐵
4
�cos𝜎𝜎 . (−1 + 2 cos2(2𝜎𝜎𝑚𝑚))

−
𝐵𝐵
6

. cos(2𝜎𝜎𝑚𝑚) . (−3 + 4 sin2 𝜎𝜎). (−3 + 4 cos2(2𝜎𝜎𝑚𝑚))�� 

eq( 130) 

𝜎𝜎+= ∆σ eq( 131) 

} 
 

𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆 = atan

⎝

⎛ sin𝑈𝑈1 . cos𝜎𝜎 + cos𝑈𝑈1 . sin𝜎𝜎 . cos𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(1 − 𝑓𝑓)�sin2 𝛼𝛼 + �sin𝑈𝑈1 . sin𝜎𝜎 . cos𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�
2
⎠

⎞ eq( 132) 

𝜆𝜆 = atan �sin𝜎𝜎 .
sin𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

cos𝑈𝑈1
. cos𝜎𝜎 − sin𝑈𝑈1 . sin𝜎𝜎 . cos𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� eq( 133) 

𝐶𝐶 =
𝑓𝑓

16
. cos2 𝛼𝛼 . �4 + 𝑓𝑓(4 − 3 cos2 𝛼𝛼)� eq( 134) 

𝐿𝐿 = 𝜆𝜆 − (1 − 𝐶𝐶).𝑓𝑓. sin𝛼𝛼 . �𝜎𝜎

+ 𝐶𝐶 sin𝜎𝜎 �cos(2𝜎𝜎𝑚𝑚) + 𝐶𝐶 cos𝜎𝜎 (−1 + 2 cos2(2𝜎𝜎𝑚𝑚))�� 
eq( 135) 
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𝑙𝑙𝑙𝑙𝑙𝑙𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐿𝐿 eq( 136) 

𝐴𝐴𝐴𝐴�𝑆𝑆𝑆𝑆𝑆𝑆 = atan�−
sin𝛼𝛼

sin𝑈𝑈1 . sin𝜎𝜎 − cos𝑈𝑈1 . cos𝜎𝜎 . cos𝐴𝐴𝐴𝐴�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
� eq( 137) 

 
An example of a C++ implementation of the above algorithm is given in Appendix E. 
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APPENDIX A ASSUMPTIONS AND OPEN ISSUES 
List of open issues, requiring prototyping or studies to define practical implementation (e.g. PWLR3 window), characterise limitations in 
performances/scope of application of a given algorithm, define new or evolve existing algorithms etc. 
 
ID Open issues Short description Scope 
OI-1. PWLR3 window size The strategy for the PWLR3 (e.g. spatial extent) has been defined consistently with IASI-NG 

specifications. Adjustments might be needed as a result of prototyping activities to account for 
border effects, computation time, configuration data size. 

Day-2 

OI-2. Instability indices Based on initial requirements and MAG review, a set of instability indices shall be computed 
centrally and disseminated to the Users. Place-holders and samples are included in the product 
format description and in the algorithm functional blocks. A first set of algorithms was described 
to fulfil the needs of the L2PF price conversion –reflecting encoding and processing complexity. 
This selection has so far been confirmed from studies and interactions with users. The ATBD 
may evolve as the functions will be prototyped and evaluated for speed to optimise the 
processing. The list of instability indices and associated algorithms may further evolve as more 
experience is made of using hyperspectral sounding products for nowcasting. 

Day-2 

OI-3. Rim sounding The algorithms described for IRS L2 Day-1 baseline have been demonstrated with IASI, which 
does not cover the full extent of IRS viewing geometry. Experience need to be made with 
sounding in the outer ring of the Earth disk, i.e. in the high to quasi-limb viewing mode. Specific 
new configuration or dedicated new algorithms may be needed to support applications in these 
viewing angles. 

Day-2 

OI-4. A priori slanted inputs Systematic exhaustive evaluation of the geometry to reconstruct slanted first-guess/prior profiles 
from NWP forecasts may introduce too large computation overhead wrt required timeliness. 
Simplification or static solutions with look-up tables may need to be considered. 

Day-1 

OI-5. Slant to vertical, pre-
/post-processing 

End-products are required at vertical profiles while the observations are slanted. In first instance, 
the retrievals are described along the slant path and post-processed to re-construct vertical 
profiles. An approach with configurable look-up table is proposed as an alternative to systematic 
online collocations. This will need to be revisited with instrument/scanning design if the 
assumption holds, e.g. how much adjacent dwell relative mapping can vary. 

Day-1 
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OI-6. Dwell staging Meanwhile, studies will be performed to possibly directly retrieve the vertical profiles from 

slanted observations, which may require staging the inputs L1 instead of the L2 outputs. 
Day-2 

OI-7. Potential for air 
quality and 
atmospheric 
composition products 

Besides O3 retrievals and a pseudo-quantitative dust indicator, no atmospheric composition 
products are regarded at Day-1. Potential for detection and quantitative retrieval of e.g. CO, NH3 
, SO2 and ash/dust composition should be evaluated as soon as the Day-1 baseline is 
consolidated, aiming operational service shortly after end of commissioning. 

Day-2 

OI-8. Dynamic background 
error for forecast a 
priori 

In the option where forecast profiles are used as a priori in the OEM, studies are needed to 
determine the optimal configuration of the background error. This can be achieved by using for 
instance the error covariance estimated from the ensemble model prediction at ECMWF. The 
study will address possible pre-processing to this error estimate as well as practical aspects of 
the data stream for near-real time processing. 

Day-2 

OI-9. Synergetic cloud 
mask with FCI 

A Day-2 possible development for IRS L1 processing includes use of FCI cloud mask, to 
complement the IRS radiances with some collocation cloud information. This external 
information could be valuable for the L2 processing itself, either for simple cloud screening or 
as additional input information. 

Day-2 
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APPENDIX C ACRONYMS 
 

Acronym Meaning 

ANN Artificial Neural Network 
API Application Programming Interface 
ATBD Algorithm Theoretical Basis Document 
ATOVS Advanced TIROS Operational Vertical Sounder, EPS 
AVHRR Advanced Very High Resolution Radiometer, EPS 
CAMEL Combined ASTER and MODIS Emissivity over Land 
CAMS Copernicus Atmosphere Monitoring Service 
CAPE Convective Available Potential Energy 
CFI Customer Furnished Item 
CIN Convective INhibition 
DEM Digital Elevation Model 
DMT Document Management Tool 
ECMWF European Centre for Medium range Weather Forecasting 
EOF Empirical Orthogonal Function 
EPS EUMETSAT Polar System 
EPS-SG EUMETSAT Polar System – Second Generation 
FCI  
FG First Guess 
FRTM Fast Radiative Transfer Model 
FTS Fourier Transform Spectrometer 
GHG Green-house gases 
GS Ground Segment 
H/W Hardware 
IASI Infrared Atmospheric Sounder Interferometer, EPS 
IASI-NG Infrared Atmospheric Sounder Interferometer - Next Generation 
IDEF-0 Integrated DEFinition 0 (function modelling method) 
IR Infrared 
ISRF Instrument Spectral Response Function 
L1C Level 1C 
L2 Level 2 
LCL Lifting condensation level 
LFC Level of Free Convection 
LI Lifted-Index 
LWIR Long-Wave Infra-Red 
MHS Microwave Humidity Sounder (part of ATOVS), EPS 
MLCAPE Mixed-Layer CAPE 
MLST Mean Local Solar Time 
MUCAPE Maximum Unstable CAPE 
MW Micro-wave 
MWIR Mid-Wave Infra-Red 
NIR Near Infrared 
NRT Near Real Time 
NWP Numerical Weather Prediction 
OSI-SAF Ocean and Sea-Ice SAF 
PCC Principal Component Compression 
PCR Principal Component Residuals 
PCS Principal Component Scores 
PS Processing Specifications 
PS Surface pressure 
FS Format Specifications 
PPF Product Processing Facility (EPS terminology for processing SW) 
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Acronym Meaning 

PSF Point Spread Function 
RO Radio Occultation 
SAD Static Auxiliary Data 
SAF Satellite Application Facility 
S/W Software 
TIR Thermal Infrared 
TRG Trace Gases 
TS Surface temperature 
VIS Visible (spectral range) 
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APPENDIX D DRAFT PRODUCTS CONTENT TABLES 
The IRS Level 2 products are organised in two product files:  

- IRS-2-SVP: State Vector Product, contains the retrieved geophysical quantities and associated processing information, quality indicators 
- IRS-2-COV: Contains the theoretical posterior Error Covariance Matrix, after the optimal estimation method. 

The following tables give an indicative overview of the products content and sizes. 

D.1 IRS-2-SVP 
DESCRIPTION UNITS DIM1 DIM2 DIM3 DIM4 DIM5 TYPE SIZE   

General information                   

Contextual parameters: e.g. lat/lon, angles etc.   160 160 10 1 1 4 1024000 zlib 
compressed 

Processing flags   160 160 10 1 1 2 512000 (ratio = 4) 

Sub-Total General information (MB) 1.54 0.38 

Temperature and Water-Vapour                   

Processing flags   160 160 10 1 1 2 512000   

First retrieval (statistical)                   

Temperature profile K 160 160 101 1 1 2 5171200   

Water-vapour profile kg/kg 160 160 101 1 1 4 10342400   

Total column integrated water-vapour kg.m-2 160 160 1 1 1 4 102400   

Uncertainty estimates for temperature profile K 160 160 40 1 1 2 2048000   

Uncertainty estimates for water vapour profile  kg/kg 160 160 30 1 1 4 3072000   

Near surface air temperature K 160 160 1 1 1 2 51200   

Near surface air water vapour  kg/kg 160 160 1 1 1 4 102400   

Second retrieval (OEM)   160               

Temperature K 160 160 101 1 1 2 5171200   

Water vapour kg/kg 160 160 101 1 1 4 10342400   
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DESCRIPTION UNITS DIM1 DIM2 DIM3 DIM4 DIM5 TYPE SIZE   

Total column integrated water-vapour kg.m-2 160 160 1 1 1 4 102400   

Optimal Estimation Diagnostics                   

State vector cost of optimal estimation retrieval   160 160 1 1 1 4 102400   

Measurement cost of optimal estimation retrieval   160 160 1 1 1 4 102400   

 Cost of first guess retrieval   160 160 1 1 1 4 102400   

Number of optimal estimation iterations   160 160 1 1 1 4 102400   

                  zlib 
compressed 

Instability indices (TBD)   160 160 10 1 1 4 1024000 (ratio = 4) 

Sub-Total TWV profiles (MB) 38.45 9.61 

Ozone                   

Processing flags   160 160 10 1 1 2 512000   

First retrieval (Statistical)                   

First-guess ozone profile kg/kg 160 160 101 1 1 4 10342400   

Total column integrated ozone kg.m-2 160 160 1 1 1 4 102400   

Uncertainty estimates for ozone profile kg/kg 160 160 20 1 1 4 2048000   

Second retrieval (OEM)   160               

Ozone profile K 160 160 101 1 1 4 10342400   

Total column integrated ozone kg.m-2 160 160 1 1 1 4 102400   

Optimal Estimation Diagnostics                   

State vector cost of optimal estimation retrieval   160 160 1 1 1 4 102400   

Measurement cost of optimal estimation retrieval   160 160 1 1 1 4 102400   

 Cost of first guess retrieval   160 160 1 1 1 4 102400 zlib 
compressed 

 Number of optimal estimation iterations   160 160 1 1 1 4 102400 (ratio = 4) 

Sub-Total Ozone profiles (MB) 23.86 5.96 

Surface parameters                   
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DESCRIPTION UNITS DIM1 DIM2 DIM3 DIM4 DIM5 TYPE SIZE   

Processing flags   160 160 10 1 1 2 512000   

First retrieval (statistical) or a priori                   

Surface skin temperature (land and sea) K 160 160 1 1 1 2 51200   

Quality indicator for surface skin temperature K 160 160 1 1 1 2 51200   

Surface pressure hPa 160 160 1 1 1 2 51200   

Quality indicator for surface pressure hPa 160 160 1 1 1 2 51200   

Land surface emissivity in selected channels - 160 160 10 1 1 2 512000   

Quality indicator for land surface emissivity - 160 160 1 1 1 2 51200   

Second retrieval (OEM)                 zlib 
compressed 

Surface skin temperature K 160 160 1 1 1 2 51200 (ratio = 4) 

Sub-Total Surface parameters (MB) 1.33 0.33 

Cloud parameters                   

Processing flags   160 160 10 1 1 2 512000   

Fractional cloud cover % 160 160 2 1 1 1 51200   

Cloud top pressure hPa 160 160 2 1 1 2 102400   

Cloud top temperature K 160 160 2 1 1 2 102400   

Predicted window channel Obs minus Calc K 160 160 1 1 1 2 51200   

Indicator of dust   160 160 1 1 1 1 25600 zlib 
compressed 

Cloud phase   160 160 1 1 1 4 102400 (ratio = 4) 

Sub-Total Cloud parameters (MB) 0.95 0.24 

Grand total size (MB / dwell) 66.12 16.53 
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D.2 IRS-2-COV 

DESCRIPTION UNITS DIM1 DIM2 DIM3 DIM4 DIM5 TYPE SIZE   

General information                   

Contextual parameters: e.g. lat/lon, angles etc.   160 160 10 1 1 4 1024000   

Processing flags   160 160 10 1 1 2 512000   

Temperature and Water-Vapour                   

Optimal Estimation Theoretical Error                   

Index of the error data record corresponding to the 
IFOVs in the line (=0xFFFF if N/A)   160 160 1 1 1 2 51200   

Retrieval error covariance matrix for water vapour, 
compressed in principal component domain (in clear-
sky only, 25% on average) 

  6400 406 1 1 1 4 4377600   

Retrieval error covariance matrix for temperature, 
compressed in principal component domain (in clear-
sky only, 25% on average) 

  6400 171 1 1 1 4 10393600   

Ozone                   

Optimal Estimation Theoretical Error                   

Index of the error data record corresponding to the 
IFOVs in the line (=0xFFFF if N/A)   160 160 1 1 1 2 51200   

Retrieval error covariance matrix for ozone, 
compressed in principal component domain (in clear-
sky only, 25% on average) 

  6400 55 1 1 1 4 1408000 
zlib 
compressed 
(ratio = 1) 

Grand Total TWV (MB / dwell) 17.82 17.82 
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APPENDIX E RADIANCE BIAS CORRECTION 
All retrieval methods involving forward model computations rely on the fact that the real 
observations made by the instrument (OBS) can be reproduced by synthetic calculations 
(CALC). This includes the statistical retrieval methods trained up-front with synthetic data (i.e. 
with an atmospheric climatology and their corresponding calculated radiances) and the 
variational retrieval (or assimilation) methods where the estimated atmospheric state vector is 
adjusted so that calculated spectra fit the observations . 
 
The optimal estimation method specified in the IRS L2 ATBD is an example of the latter, 
where the cost function J, known to the readers, is minimised iteratively: 

J = (x-xa)T . Sx
-1 . (x-xa) + (y – F(x))T . Sy

-1 . (y – F(x)) 
 
We focus hereafter on the observation error term y – F(x), weighted by the observation error 
matrix R-1 ; where y is the observed spectrum, F(x) the forward model and x the estimated 
atmospheric state vector. 
 
Because of the instrument radiometric and spectral calibrations but also of possible instrument 
artefacts, the spectrum recorded by the instrument may differ from the actual radiances at the 
top of the atmosphere. Similarly, the radiative transfer model used to represent or model these 
radiances with the estimated atmospheric state vector may differ from the reality because of 
the uncertainties in its underlying spectroscopy or errors in the radiative transfer calculations, 
especially in the context of a fast radiative transfer model [Matricardi 2017]. The synthetic 
radiances may as well be affected by the geophysical parameters not taken into account or not 
adjusted in the simulations (other atmospheric constituents, residual clouds, inaccurate surface 
parameter description...). 
 
As a result, the observations and the simulations generally differ to a certain degree which 
includes a random and a static component. The random component determines within how 
much an observation can be meaningfully fitted by a simulation when adjusting or retrieving 
the true atmospheric state vector. It is captured in the matrix R. The systematic component (or 
bias) reflects the systematic differences between the observing and simulating systems which 
will remain even if the true atmospheric state vector is ingested by the forward model. This has 
been observed with the current IR missions but also long experienced with other instruments 
[SWG paper EUM/STG-SWG/35/13/DOC/10 on the radiance bias correction at EUMETSAT] 
and accounted for in the retrieval and assimilation community ([Eyre 1992], [Dee 2004]) because 
of the significance of these biases. We list hereafter a few reasons for these systematic 
differences and provide some results to quantify them. 
 

A. The specification for the absolute radiometric calibration is of 0.5 K for IRS, which is 
already significant compared to required the instrument noise. 
 

B. We present in the Figure 32 the statistics of OBS-CALC for IASI temperate and tropical 
ocean observations under clear-sky conditions as assessed by visual inspection of the 
corresponding AVHRR images. The atmospheric state vectors are built with ECMWF 
analyses and the forward computations are performed in turn with former versions of 
RTTOV 10 (top) and OSS (bottom, in green). Day and night time calculations are done 
separately with RTTOV (red and blue respectively), they are combined in the case of 
OSS. All simulations show systematic differences of up to several tenth of Kelvin in 
the CO2, window and water-vapour regions, sometimes exceeding 0.5 K, with rapid 
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sign change in neighbouring spectral channels. The systematic differences are extreme 
in the O3 and CH4 regions, due do the inaccurate trace gas profiles used for the 
simulations. Handling these channels in the context of retrieval is discussed in section 
3. 
 
 

 

Figure 32: IASI OBS-CALC statistics computed with the clear ocean cases identified in the IAVISA database 
at mid and low latitudes. 
 

C. Similar results and observations are made when the atmosphere is described with sonde 
measurements instead of a numerical model. In this case, a multi-year extract of the 
ARSA database was used, which consists of quality controlled sonde measurements 
collocated with satellite observations at the Laboratoire de Météorologie Dynamique 
[Armante et al. 2013]. They are illustrated in the Figures 33 and 34 (the statistics of the 
CALC-OBS are represented instead of OBS-CALC). Here again, the systematic 
differences typically reach 0.5 K and may exceed it, with rapid sign change for 
neighbouring channels. 
 

D. In the Figure 35, we show the systematic effect on radiances of uncertainties in the 
forward model. The statistics (red: standard deviation, black: bias) result from the 
comparison of 5190 spectra simulated with LBLRTM 12.2 and 11.1 [Matricardi 2014]. It 
is important to note that no observations and no collocation errors are involved here. 
We are solely quantifying the effect of several spectroscopic upgrades, namely 
including the introduction of CH4 line mixing, new CO2 line mixing coefficients, the 
introduction of temperature dependence of CO2 continuum in the CO2 band head 
region, modification of CO2 continuum coefficients between 2000 and 3000 cm-1 and 
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modification of H2O self continuum coefficients between 2000 and 3200 cm-1. Here 
again, the systematic effects reach 0.5 K in the CO2 and H2O regions, with particular 
stronger and severe consequences in the O3 region where the biases in adjacent channels 
exceed 1 K. 
 
 

 

 

Figure 33: Mean IASI CALC-OBS computed with ARSA sonde measurements and RTTOV 

 

Figure 34: Histogram of the differences IASI “CALC-OBS” at 704.5 cm-1 (CO2 15µm band) with the ARSA 
sonde database: green= sea day, blue = sea night, purple = land day, red = land night 

Wavenumber [cm-1] 

 [K] 
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Furthermore [not shown here] it is observed that the biases between observations and 
simulations may vary with the viewing angle as well as with the surface and atmospheric 
situation. Bias correction can be implemented as a simple static offset for each channel, but 
more elaborated radiance tuning algorithms can be developed, for instance with a linear 
regression against the viewing geometry, or even aiming more sophisticated modelling for 
different scenes and types of observations. 
 
 

 

Figure 35: Mean (top) and standard deviation (bottom) difference between LBLRTM v11.1 and v12.2 
simulations with different 5190 profiles [Matricardi 2014] 
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Figure 36: Mean (top) and standard deviation (bottom) difference between RTTOV and LBLRTM v12.2 
simulations of IASI maritime (left) and continental (right) spectra [Matricardi 2017] 
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APPENDIX F EXAMPLE OF A C++ IMPLEMENTATION OF THE SUB-
PROFILE POINTS COMPUTATIONS 

The following pages contain listings of the C++ implementation of the algorithms defined in 
§4.16. 
 
 
geoPos ongroundShift(geoPos target, double targToSatAz, double referenceAltitude, double zenithAngle) 
{ 
// input parameters: 
// ================ 
// target target geocentric longitude and latitude in degrees (EF) 
// targToSatAz target to Satellite Azimuth in degrees (Topocentric, az counted from local north) 
// referenceAltitude altitude in meters of new target 
// zenithAngle target zenith angle in degrees 
// 
// The following data structure is used: 
// geoPos: 
// ====== 
//struct geoPos { 
// double ra,de; 
//} ; 
// 
//functions called: 
//================ 
// destVicenty: 
geoPos newTarget; 
double distance; 
double theta; 
double PI =3.141592653589793238463; 
// theta: 90 deg - target zenith angle 
theta = 90.0 - zenithAngle; 
// distance from target to new target defined by reference altitude 
distance = referenceAltitude/tan(theta*PI/180.0); 
newTarget = destVincenty(target.de, target.ra, targToSatAz, distance) ; 
newTarget.dist = distance; 
return newTarget; 
}; 
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geoPos destVincenty(double lat1, double lon1, double bearing, double dist) 
{ 
/************************************************************************** 
* Calculate WGS 84 destination given starting lat/long (degrees), 
* bearing (degrees) & distance (Meters). 
* 
* from: Vincenty direct formula - T Vincenty, "Direct and Inverse 
* Solutions of Geodesics on the Ellipsoid with application of 
* nested equations", Survey Review, vol XXII no 176, 1975 
* http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf 
* 
************************************************************************** 
*/ 
/* local variable definitions */ 
// Trigonometric constants and conversion factors 
// ---------------------------------------------- 
double PI =3.141592653589793238463; 
double toDEG, toRAD; 
toDEG = 180.0/PI; 
toRAD = 1.0/toDEG; 
// WGS-84 ellipsiod 
double a=6378137.0, b=6356752.3142, f=1/298.257223563; 
double alpha1,sinAlpha, sinAlpha1, cosAlpha1, cosSqAlpha; 
double sigma, sigma1, cos2SigmaM, sinSigma, cosSigma, deltaSigma, sigmaP; 
double tanU1, cosU1, sinU1, uSq; 
double A, B, C, L, lambda; 
double tmp, lat2; 
//double revAz; /* unused but retained for alg completeness */ 
double lat2out, lon2out; 
geoPos newTarg; 
/* code body */ 
alpha1 = bearing*toRAD; 
sinAlpha1 = sin(alpha1); 
cosAlpha1 = cos(alpha1); 
tanU1 = (1-f) * tan(lat1*toRAD); 
cosU1 = 1 / sqrt((1 + tanU1*tanU1)); 
sinU1 = tanU1*cosU1; 
sigma1 = atan2(tanU1, cosAlpha1); 
sinAlpha = cosU1 * sinAlpha1; 
cosSqAlpha = 1 - sinAlpha*sinAlpha; 
uSq = cosSqAlpha * (a*a - b*b) / (b*b); 
A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq))); 
B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq))); 
sigma = dist / (b*A); 
sigmaP = 2*PI; 
while (fabs(sigma-sigmaP) > 1e-12) { 
cos2SigmaM = cos(2*sigma1 + sigma); 
sinSigma = sin(sigma); 
cosSigma = cos(sigma); 
deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-B/6*cos2SigmaM*(-
3+4*sinSigma*sinSigma)*(-3 
+4*cos2SigmaM*cos2SigmaM))); 
sigmaP = sigma; 
sigma = dist / (b*A) + deltaSigma; 
} 
tmp = sinU1*sinSigma - cosU1*cosSigma*cosAlpha1; 
lat2 = atan2(sinU1*cosSigma + cosU1*sinSigma*cosAlpha1, 
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(1-f)*sqrt(sinAlpha*sinAlpha + tmp*tmp)); 
lambda = atan2(sinSigma*sinAlpha1, 
cosU1*cosSigma - sinU1*sinSigma*cosAlpha1); 
C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha)); 
L = lambda - (1-C)*f*sinAlpha*(sigma+C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM))); 
// final bearing 
// revAz = atan2(sinAlpha, -tmp); 
// return new position in degrees 
newTarg.de = lat2*toDEG; 
newTarg.ra = lon1+(L*toDEG); 
return newTarg; 
} 
 
 
<Compose your document using the styles provided here for headings, captions and appendices. Ensure the last 
chapter of your document contains a section for implementation documents if they exist – an example is provided 
on the next page.>  
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